A002884
Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).
Original entry on oeis.org
1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0
PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
- Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
- K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..57 (first 30 terms from T. D. Noe)
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
- P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
- Nataša Ilievska and Danilo Gligoroski , Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
- Aaron Meyerowitz & N. J. A. Sloane, Correspondence 1979.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Jeffrey Overbey, William Traves, and Jerzy Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29, Iss. 1 (2005), pp. 59-72; author's copy.
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for sequences related to binary matrices.
- Index entries for sequences related to groups.
- Index to divisibility sequences.
-
[1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
-
# First program
A002884:= n-> mul(2^n - 2^i, i=0..n-1);
seq(A002884(n), n = 0..12);
# Second program
A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
seq(A002884(n), n=0..12);
-
Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
-
a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
-
[product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023
A055165
Number of invertible n X n matrices with entries equal to 0 or 1.
Original entry on oeis.org
1, 1, 6, 174, 22560, 12514320, 28836612000, 270345669985440, 10160459763342013440
Offset: 0
Ulrich Hermisson (uhermiss(AT)server1.rz.uni-leipzig.de), Jun 18 2000
For n=2 the 6 matrices are {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}}.
- Eric Weisstein's World of Mathematics, Nonsingular Matrix.
- Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws, arXiv:1805.07431 [cs.LG], 2018.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005; Linear Algebra and its Applications, 414 (2006), 310-346.
- Miodrag Zivkovic, Classification of (0,1) matrices of order not exceeding 8.
- Index entries for sequences related to binary matrices
A046747(n) + a(n) = 2^(n^2) = total number of n X n (0, 1) matrices = sequence
A002416.
-
a(n)=sum(t=0,2^n^2-1,!!matdet(matrix(n,n,i,j,(t>>(i*n+j-n-1))%2))) \\ Charles R Greathouse IV, Feb 09 2016
-
from itertools import product
from sympy import Matrix
def A055165(n): return sum(1 for s in product([0,1],repeat=n**2) if Matrix(n,n,s).det() != 0) # Chai Wah Wu, Sep 24 2021
More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.rs), Feb 28 2006
A000410
Number of singular n X n rational (0,1)-matrices.
Original entry on oeis.org
0, 0, 6, 425, 65625, 27894671, 35716401889, 144866174953833
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005.
- Miodrag Zivkovic, Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
- Index entries for sequences related to binary matrices
n=7 term from Guenter M. Ziegler (ziegler(AT)math.TU-Berlin.DE)
A000409
Singular n X n (0,1)-matrices: the number of n X n (0,1)-matrices having distinct, nonzero ordered rows, but having at least two equal columns or at least one zero column.
Original entry on oeis.org
0, 6, 350, 43260, 14591171, 14657461469, 46173502811223, 474928141312623525, 16489412944755088235117, 1985178211854071817861662307, 846428472480689964807653763864449, 1299141117072945982773752362381072143359, 7268140170419155675761326840423792818571154945, 149650282980396792665043455999899697765782372693740287
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
- Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
- N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
- Index entries for sequences related to binary matrices
-
[ -(&+[StirlingFirst(n+1,k+1)*Binomial(2^k-1,n): k in [0..n-1]]): n in [2..15]]; // G. C. Greubel, Jun 05 2020
-
with(combinat): T := proc(n) -sum(stirling1(n+1,k+1)*binomial(2^k-1,n),k=0..n-1); end proc:
-
a[n_] := -Sum[ StirlingS1[n+1, k+1]*Binomial[2^k-1, n], {k, 0, n-1}]; Table[a[n], {n, 2, 15}] (* Jean-François Alcover, Nov 21 2012, from formula *)
-
a(n) = -sum(k=0, n-1, stirling(n+1, k+1, 1)*binomial(2^k-1, n)); \\ Michel Marcus, Jun 05 2020
-
[sum((-1)^(n+k+1)*stirling_number1(n+1,k+1)*binomial(2^k-1,n) for k in (0..n-1)) for n in (2..15)] # G. C. Greubel, Jun 05 2020
A056989
Number of nonsingular n X n (-1,0,1)-matrices (over the reals).
Original entry on oeis.org
1, 2, 48, 11808, 27947520, 609653621760, 119288919620689920
Offset: 0
a(1) = 2: [1], [ -1].
a(2) = 48: There are 8 choices for the first column, u (say) and then the 2nd column can be anything except 0, u, -u, so 6 choices, giving a total of 8*6 = 48.
-
(* A brute force solution up to n = 4 *) a[n_] := a[n] = (m = Array[x, {n, n}]; cnt = 0; iter = {#, -1, 1}& /@ Flatten[m]; Do[ If[ Det[m] != 0, cnt++], Evaluate[ Sequence @@ iter]]; cnt); Table[ Print[a[n]]; a[n], {n, 1, 4}] (* Jean-François Alcover, Oct 11 2012 *)
a(4) from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
a(0)-a(5) confirmed and a(6) added by
Minfeng Wang, May 01 2024
A064230
Triangle T(n,k) = number of rational (0,1) matrices of rank k (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 9, 6, 1, 49, 288, 174, 1, 225, 6750, 36000, 22560, 1, 961, 118800, 3159750, 17760600, 12514320, 1, 3969, 1807806, 190071000, 5295204600, 34395777360, 28836612000, 1, 16129, 25316928, 9271660734, 1001080231200, 32307576315840
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 9, 6;
1, 49, 288, 174;
1, 225, 6750, 36000, 22560;
1, 961, 118800, 3159750, 17760600, 12514320;
...
- J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.
-
T=matrix(5,5); { for(n=0,4, mm=matrix(n,n); for(k=0,n,T[1+n,1+k]=0); forvec(x=vector(n*n,i,[0,1]), for(i=1,n, for(j=1,n,mm[i,j]=x[i+n*(j-1)])); T[1+n,1+matrank(mm)]++); for(k=0,n,print1(T[1+n,1+k], if(k
6 more terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 17 2004
A086906
Number of symmetric singular n X n (0,1) matrices over the reals.
Original entry on oeis.org
1, 4, 32, 496, 14172, 816684, 87982904, 18748545824, 7565600671504, 5940152086634096
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003
A051752
Number of n X n (real) {0,1}-matrices having determinant A003432(n).
Original entry on oeis.org
1, 1, 3, 3, 60, 3600, 529200, 75600, 195955200, 13716864000
Offset: 0
- Eric Weisstein's World of Mathematics, Hadamard's Maximum Determinant Problem.
- Eric Weisstein's World of Mathematics, (0, 1)-Matrix
- Luke Zeng, Shawn Xin, Avadesian Xu, Thomas Pang, Tim Yang, Maolin Zheng, Seele's New Anti-ASIC Consensus Algorithm with Emphasis on Matrix Computation, arXiv:1905.04565 [cs.CR], 2019.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005.
- Miodrag Zivkovic, Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
a(5) = 3600 from Daniel P. Corson (danl(AT)MIT.EDU), Jan 09 2000
a(6) = 529200, a(7) = 75600 from Ulrich Hermisson (uhermiss(AT)rz.uni-leipzig.de), Feb 25 2003
More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.yu), Feb 28 2006
A064231
Triangle read by rows: T(n,k) = number of rational (+1,-1) matrices of rank k (n >= 1, 1 <= k <= n).
Original entry on oeis.org
2, 8, 8, 32, 288, 192, 128, 6272, 36864, 22272, 512, 115200, 3456000, 18432000, 11550720, 2048, 1968128, 243302400, 6471168000, 36373708800, 25629327360, 8192, 32514048, 14809546752, 1557061632000, 43378316083200, 281770208133120
Offset: 1
2; 8,8; 32,288,192; 128,6272,36864,22272; ...
- J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.
-
T=matrix(4,4); { for(n=1,4, mm=matrix(n,n); for(k=1,n, T[n,k]=0); forvec(x=vector(n*n,i,[0,1]), for(i=1,n, for(j=1,n,mm[i,j]=(-1)^x[i+n*(j-1)])); T[n,matrank(mm)]++); for(k=1,n,print1(T[n,k], if(k
Offset changed to 1 by
T. D. Noe, Mar 02 2011
A086264
Number of real {0,1} n X n matrices having determinant=1.
Original entry on oeis.org
1, 1, 3, 84, 10020, 4851360, 9240051240, 67745781734400, 1883481284085791040
Offset: 0
-
a[n_] := Module[{M, iter, cnt = 0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[Det[M] == 1, cnt++], Evaluate[Sequence @@ iter]]; cnt];
Do[Print[n, " ", a[n]], {n, 1, 4}] (* Jean-François Alcover, Dec 09 2018 *)
Showing 1-10 of 16 results.
Comments