cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055165 Number of invertible n X n matrices with entries equal to 0 or 1.

Original entry on oeis.org

1, 1, 6, 174, 22560, 12514320, 28836612000, 270345669985440, 10160459763342013440
Offset: 0

Views

Author

Ulrich Hermisson (uhermiss(AT)server1.rz.uni-leipzig.de), Jun 18 2000

Keywords

Comments

All eigenvalues are nonzero.

Examples

			For n=2 the 6 matrices are {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}}.
		

Crossrefs

Cf. A056990, A056989, A046747, A055165, A002416, A003024 (positive definite matrices).
A046747(n) + a(n) = 2^(n^2) = total number of n X n (0, 1) matrices = sequence A002416.
Main diagonal of A064230.

Programs

  • PARI
    a(n)=sum(t=0,2^n^2-1,!!matdet(matrix(n,n,i,j,(t>>(i*n+j-n-1))%2))) \\ Charles R Greathouse IV, Feb 09 2016
    
  • Python
    from itertools import product
    from sympy import Matrix
    def A055165(n): return sum(1 for s in product([0,1],repeat=n**2) if Matrix(n,n,s).det() != 0) # Chai Wah Wu, Sep 24 2021

Formula

For an asymptotic estimate see A046747. A002884 is a lower bound. A002416 is an upper bound.
a(n) = n! * A088389(n). - Gerald McGarvey, Oct 20 2007

Extensions

More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.rs), Feb 28 2006
Description improved by Jeffrey Shallit, Feb 17 2016
a(0)=1 prepended by Alois P. Heinz, Jun 18 2022

A046747 Number of n X n rational {0,1}-matrices of determinant 0.

Original entry on oeis.org

1, 10, 338, 42976, 21040112, 39882864736, 292604283435872, 8286284310367538176
Offset: 1

Views

Author

Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)

Keywords

Examples

			a(2)=10: the matrix of all 0's, 4 matrices with 2 zeros in the same row or column, 4 matrices with 3 zeros and the all-1 matrix.
		

Crossrefs

Programs

  • Mathematica
    Sum[KroneckerDelta[Det[Array[Mod[Floor[k/(2^(n*(#1-1)+#2-1))],2]&,{n,n}]],0],{k,0,(2^(n^2))-1}] (* John M. Campbell, Jun 24 2011 *)
    Count[Det /@ Tuples[{0, 1}, {n, n}], 0] (* David Trimas, Sep 23 2024 *)
  • PARI
    A046747(n) = m=matrix(n,n); ct=0; for(x=0,2^(n*n)-1,a=binary(x+2^(n*n)); for(i=1,n, for(j=1,n,m[i,j]=a[n*i+j+1-n])); if(matdet(m)==0,ct=ct+1,); ); ct \\ Randall L Rathbun
    
  • PARI
    a(n)=sum(i=0,2^n^2-1,matdet(matrix(n,n,x,y,(i>>(n*x+y-n-1))%2))==0) \\ Charles R Greathouse IV, Feb 21 2015

Formula

a(n) = 2^(n^2) - n! * binomial(2^n -1, n) + n! * A000410(n).
a(n) + A055165(n) = 2^(n^2) = total number of n X n (0, 1) matrices.
The probability that a random n X n {0,1}-matrix is singular is conjectured to be asymptotic to C(n+1, 2)*(1/2)^(n-1). [Corrected by N. J. A. Sloane, Jan 02 2007]

Extensions

a(8) from Vladeta Jovovic, Mar 28 2006

A056990 Number of nonsingular n X n (-1,1)-matrices.

Original entry on oeis.org

1, 2, 8, 192, 22272, 11550720, 25629327360, 236229525504000, 8858686914082897920, 1331751782100764385607680
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2^(2*n-1) * A055165(n-1) for n>=1.

Extensions

a(5) from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 26 2000
a(6)-a(8) computed from A055165 by David desJardins, Apr 22 2001
a(9) from Max Alekseyev, computed from A055165, Jan 15 2007
a(0)=1 prepended by Alois P. Heinz, May 29 2024

A118992 Number of real n X n invertible symmetric (+1,-1) matrices.

Original entry on oeis.org

2, 4, 32, 512, 16896, 1190144, 163899904, 46195853312, 25585116626944, 28281621931343872
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = 2^(n*(n+1)/2) - A118990(n) = A118994(n) + A118997(n). - Max Alekseyev, Jun 12 2025

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A057981 Number of singular n X n (-1,0,1)-matrices.

Original entry on oeis.org

0, 1, 33, 7875, 15099201, 237634987683, 30805715676309201
Offset: 0

Views

Author

Eric W. Weisstein, Oct 23 2000

Keywords

Crossrefs

Complement of A056989.

Formula

a(n) = A060722(n) - A056989(n). - Alois P. Heinz, Dec 02 2019

Extensions

a(5) from Giovanni Resta, Feb 20 2009
a(0)=0 prepended by Alois P. Heinz, Dec 02 2019
a(0)-a(5) confirmed and a(6) added by Minfeng Wang, May 01 2024

A197487 Number of nonsingular n X n matrices with elements from {0,1,2}.

Original entry on oeis.org

1, 2, 50, 12792, 30844560, 671869521960, 129553882116606720
Offset: 0

Views

Author

Roger Hui, Nov 29 2011

Keywords

Crossrefs

Programs

  • Mathematica
    (* 2x2 case *) cnt = 0; Do[d = Det[{{a, b}, {c, d}}]; If[d != 0, cnt++], {a, 0, 2}, {b, 0, 2}, {c, 0, 2}, {d, 0, 2}]; cnt (* T. D. Noe, Nov 29 2011 *)

Extensions

a(5)-a(6) from Minfeng Wang, May 29 2024
a(0)=1 prepended by Alois P. Heinz, May 29 2024
Showing 1-6 of 6 results.