cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086899 Number of real n X n invertible symmetric (0,1) matrices.

Original entry on oeis.org

1, 4, 32, 528, 18596, 1280468, 180452552, 49970930912, 27618771417328, 30088644932329872
Offset: 1

Views

Author

Wouter Meeussen, Aug 23 2003

Keywords

Examples

			For n = 2 the 4 matrices are 10/01, 01/10, 11/10, 01/11.
		

Crossrefs

Programs

  • Mathematica
    triamat[li_List] := (*see A086900*); Table[it=triamat/@IntegerDigits[Range[0, -1+2^(n(n+1)/2)], 2, n(n+1)/2]; Count[it, (q_)?MatrixQ/;(Det[q]=!=0)], {n, 5}]

Formula

a(n) = A086900(n) + A118996(n) = 2^(n*(n+1)/2) - A086906(n). - Max Alekseyev, Jun 12 2025

Extensions

a(6) and a(7) from Giovanni Resta, May 08 2006
a(8)-a(10) from Max Alekseyev, Jun 17 2025

A118993 Number of real n X n symmetric (+1,-1) matrices with nonzero permanent.

Original entry on oeis.org

2, 4, 64, 832, 23808, 1725952, 268435456, 64638447616, 33770336417792
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118994 Number of real n X n symmetric (+1,-1) matrices with positive determinant.

Original entry on oeis.org

1, 0, 16, 432, 8448, 282240, 81949952, 32715189248, 12792558313472, 9318420858593280
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Programs

  • Maple
    F:= proc(n) local Q,q,X,x,t,A,ii,L,v;
      Q:= [[1,1],seq(seq([i,j],i=2..j),j=2..n)];
      q:= nops(Q);
      X:= [seq(x[q[1],q[2]],q=Q)];
      t:= 0:
      A:= Matrix(n,n,shape=symmetric,symbol=x);
      A[2..n,1]:= Vector(n-1,1);
      for ii from 0 to 2^q-1 do
        L:= map(s -> 2*s-1, convert(2^q+ii,base,2)[1..q]);
        v:= LinearAlgebra:-Determinant(subs(zip(`=`,X,L),A));
        if v > 0 then t:= t+1 fi
      od;
      2^(n-1)*t;
    end proc:
    seq(F(n),n=1..7); # Robert Israel, Apr 14 2016

Formula

a(n) = A118992(n) - A118997(n). For odd n, a(n) = A118997(n) = A118992(n)/2. - Max Alekseyev, Jun 12 2025

Extensions

a(8) from Robert Israel, Apr 17 2016
a(9)-a(10) from Max Alekseyev, Jun 17 2025

A118997 Number of real n X n symmetric (+1,-1) matrices with negative determinant.

Original entry on oeis.org

1, 4, 16, 80, 8448, 907904, 81949952, 13480664064, 12792558313472, 18963201072750592
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(2n+1) = A118994(2n+1) = A118992(2n+1)/2. - Max Alekseyev, May 08 2009
a(n) = A118992(n) - A118994(n). - Max Alekseyev, Jun 12 2025

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A118990 Number of symmetric singular n X n (+1,-1) matrices over the reals.

Original entry on oeis.org

0, 4, 32, 512, 15872, 907008, 104535552, 22523623424, 9599255461888, 7747175087620096
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = 2^(n*(n+1)/2) - A118994(n) - A118997(n) = 2^(n*(n+1)/2) - A118992(n). - Max Alekseyev, May 08 2009

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025
Showing 1-5 of 5 results.