cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002416 a(n) = 2^(n^2).

Original entry on oeis.org

1, 2, 16, 512, 65536, 33554432, 68719476736, 562949953421312, 18446744073709551616, 2417851639229258349412352, 1267650600228229401496703205376, 2658455991569831745807614120560689152, 22300745198530623141535718272648361505980416, 748288838313422294120286634350736906063837462003712
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the number of n X n (0, 1) matrices.
Also number of directed graphs on n labeled nodes allowing self-loops (cf. A053763).
1/2^(n^2) is the Hankel transform of C(n, n/2)*(1 + (-1)^n)/(2*2^n), or C(2n, n)/4^n with interpolated zeros. - Paul Barry, Sep 27 2007
Hankel transform of A064062. - Philippe Deléham, Nov 19 2007
a(n) is also the order of the semigroup (monoid) of all binary relations on an n-set. - Abdullahi Umar, Sep 14 2008
With offset = 1, a(n) is the number of n X n (0, 1) matrices with an even number of 1's in every row and in every column. - Geoffrey Critzer, May 23 2013
a(n) is the number of functions from an n-set to its power set (by definition of function including the empty function only when n = 0). - Rick L. Shepherd, Dec 27 2014

Examples

			G.f. = 1 + 2*x + 16*x^2 + 512*x^3 + 65536*x^4 + 33554432*x^5 + ...
		

References

  • John M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). - Abdullahi Umar, Sep 14 2008

Crossrefs

Bisection of A060656.

Programs

Formula

G.f. satisfies: A(x) = 1 + 2*x*A(4x). - Paul D. Hanna, Dec 04 2009
a(n) = 2^n * Sum_{i = 0..C(n, 2)} C(C(n, 2), i)*3^i. The summation conditions on the number of symmetric pairs (a,b) with aA027465, A013610. - Geoffrey Critzer, Nov 05 2024
G.f.: 1 / (1 - 2^1*x / (1 - 2^1*(2^2-1)*x / (1 - 2^5 * x / (1 - 2^3*(2^4-1)*x / (1 - 2^9*x / (1 - 2^5*(2^6-1)*x / ...)))))). - Michael Somos, May 12 2012
a(n) = [x^n] 1/(1 - 2^n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=0} 1/a(n) = A319015. - Amiram Eldar, Oct 14 2020

A000410 Number of singular n X n rational (0,1)-matrices.

Original entry on oeis.org

0, 0, 6, 425, 65625, 27894671, 35716401889, 144866174953833
Offset: 1

Keywords

Comments

Number of all n X n (0,1)-matrices having distinct, nonzero ordered rows and determinant 0 - compare A000409.
a(n) is the number of singular n X n rational {0,1}-matrices with no zero rows and with all rows distinct, up to permutation of rows and so a(n) = binomial(2^n-1,n) - A088389(n). Cf. A116506, A116507, A116527, A116532. - Vladeta Jovovic, Apr 03 2006

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

n! * a(n) = A046747(n) - 2^(n^2) + n! * binomial(2^n -1, n).

Extensions

n=7 term from Guenter M. Ziegler (ziegler(AT)math.TU-Berlin.DE)
a(8) from Vladeta Jovovic, Mar 28 2006

A064230 Triangle T(n,k) = number of rational (0,1) matrices of rank k (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 9, 6, 1, 49, 288, 174, 1, 225, 6750, 36000, 22560, 1, 961, 118800, 3159750, 17760600, 12514320, 1, 3969, 1807806, 190071000, 5295204600, 34395777360, 28836612000, 1, 16129, 25316928, 9271660734, 1001080231200, 32307576315840
Offset: 0

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

Rows add to 2^(n^2).
Komlos and later Kahn, Komlos and Szemeredi show that almost all such matrices are invertible.
Table 3 from M. Zivkovic, Classification of small (0,1) matrices (see link). - Vladeta Jovovic, Mar 28 2006

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   9,      6;
  1,  49,    288,     174;
  1, 225,   6750,   36000,    22560;
  1, 961, 118800, 3159750, 17760600, 12514320;
  ...
		

References

  • J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
  • J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.

Crossrefs

Main diagonal gives A055165.

Programs

  • PARI
    T=matrix(5,5); { for(n=0,4, mm=matrix(n,n); for(k=0,n,T[1+n,1+k]=0); forvec(x=vector(n*n,i,[0,1]), for(i=1,n, for(j=1,n,mm[i,j]=x[i+n*(j-1)])); T[1+n,1+matrank(mm)]++); for(k=0,n,print1(T[1+n,1+k], if(k
    				

Formula

Sum_{k=1..n} k * T(n,k) = A086875(n). - Alois P. Heinz, Jun 18 2022

Extensions

More terms and PARI code from Michael Somos, Sep 25 2001
6 more terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 17 2004
More terms from Vladeta Jovovic, Mar 28 2006

A173760 Partials sums of A000410.

Original entry on oeis.org

0, 0, 6, 431, 66056, 27960727, 35744362616, 144901919316449
Offset: 1

Author

Jonathan Vos Post, Feb 23 2010

Keywords

Comments

Partials sums of number of singular n X n rational (0,1)-matrices. The subsequence of primes in this partial sum begins: 431.

Examples

			a(8) = 0 + 0 + 6 + 425 + 65625 + 27894671 + 35716401889 + 144866174953833.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A000410(i).
Showing 1-4 of 4 results.