Original entry on oeis.org
0, 0, 6, 431, 66056, 27960727, 35744362616, 144901919316449
Offset: 1
a(8) = 0 + 0 + 6 + 425 + 65625 + 27894671 + 35716401889 + 144866174953833.
A002884
Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).
Original entry on oeis.org
1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0
PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
- Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
- K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..57 (first 30 terms from T. D. Noe)
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
- P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
- Nataša Ilievska and Danilo Gligoroski , Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
- Aaron Meyerowitz & N. J. A. Sloane, Correspondence 1979.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Jeffrey Overbey, William Traves, and Jerzy Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29, Iss. 1 (2005), pp. 59-72; author's copy.
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for sequences related to binary matrices.
- Index entries for sequences related to groups.
- Index to divisibility sequences.
-
[1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
-
# First program
A002884:= n-> mul(2^n - 2^i, i=0..n-1);
seq(A002884(n), n = 0..12);
# Second program
A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
seq(A002884(n), n=0..12);
-
Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
-
a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
-
[product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023
A046747
Number of n X n rational {0,1}-matrices of determinant 0.
Original entry on oeis.org
1, 10, 338, 42976, 21040112, 39882864736, 292604283435872, 8286284310367538176
Offset: 1
Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)
a(2)=10: the matrix of all 0's, 4 matrices with 2 zeros in the same row or column, 4 matrices with 3 zeros and the all-1 matrix.
- J. Bourgain, V. Vu and P. M. Wood, On the Singularity Probability of Discrete Random Matrices, Journal of Functional Analysis, 258 (2010), 559-603.
- R. P. Brent and J. H. Osborn, Bounds on minors of binary matrices, arXiv preprint arXiv:1208.3330 [math.CO], 2012.
- J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
- N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
- Eric Weisstein's World of Mathematics, Singular Matrix.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005.
- Miodrag Zivkovic, Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
- Index entries for sequences related to binary matrices
-
Sum[KroneckerDelta[Det[Array[Mod[Floor[k/(2^(n*(#1-1)+#2-1))],2]&,{n,n}]],0],{k,0,(2^(n^2))-1}] (* John M. Campbell, Jun 24 2011 *)
Count[Det /@ Tuples[{0, 1}, {n, n}], 0] (* David Trimas, Sep 23 2024 *)
-
A046747(n) = m=matrix(n,n); ct=0; for(x=0,2^(n*n)-1,a=binary(x+2^(n*n)); for(i=1,n, for(j=1,n,m[i,j]=a[n*i+j+1-n])); if(matdet(m)==0,ct=ct+1,); ); ct \\ Randall L Rathbun
-
a(n)=sum(i=0,2^n^2-1,matdet(matrix(n,n,x,y,(i>>(n*x+y-n-1))%2))==0) \\ Charles R Greathouse IV, Feb 21 2015
A116532
Number of singular n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.
Original entry on oeis.org
0, 0, 3, 285, 50820, 23551920, 31898503077, 134251404794199
Offset: 1
Binary matrices with distinct rows and columns, various versions:
A059202,
A088309,
A088310,
A088616,
A089673,
A089674,
A093466,
A094000,
A094223,
A116532,
A116539,
A181230,
A259763
A000409
Singular n X n (0,1)-matrices: the number of n X n (0,1)-matrices having distinct, nonzero ordered rows, but having at least two equal columns or at least one zero column.
Original entry on oeis.org
0, 6, 350, 43260, 14591171, 14657461469, 46173502811223, 474928141312623525, 16489412944755088235117, 1985178211854071817861662307, 846428472480689964807653763864449, 1299141117072945982773752362381072143359, 7268140170419155675761326840423792818571154945, 149650282980396792665043455999899697765782372693740287
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
- Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
- N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
- Index entries for sequences related to binary matrices
-
[ -(&+[StirlingFirst(n+1,k+1)*Binomial(2^k-1,n): k in [0..n-1]]): n in [2..15]]; // G. C. Greubel, Jun 05 2020
-
with(combinat): T := proc(n) -sum(stirling1(n+1,k+1)*binomial(2^k-1,n),k=0..n-1); end proc:
-
a[n_] := -Sum[ StirlingS1[n+1, k+1]*Binomial[2^k-1, n], {k, 0, n-1}]; Table[a[n], {n, 2, 15}] (* Jean-François Alcover, Nov 21 2012, from formula *)
-
a(n) = -sum(k=0, n-1, stirling(n+1, k+1, 1)*binomial(2^k-1, n)); \\ Michel Marcus, Jun 05 2020
-
[sum((-1)^(n+k+1)*stirling_number1(n+1,k+1)*binomial(2^k-1,n) for k in (0..n-1)) for n in (2..15)] # G. C. Greubel, Jun 05 2020
A064230
Triangle T(n,k) = number of rational (0,1) matrices of rank k (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 9, 6, 1, 49, 288, 174, 1, 225, 6750, 36000, 22560, 1, 961, 118800, 3159750, 17760600, 12514320, 1, 3969, 1807806, 190071000, 5295204600, 34395777360, 28836612000, 1, 16129, 25316928, 9271660734, 1001080231200, 32307576315840
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 9, 6;
1, 49, 288, 174;
1, 225, 6750, 36000, 22560;
1, 961, 118800, 3159750, 17760600, 12514320;
...
- J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.
-
T=matrix(5,5); { for(n=0,4, mm=matrix(n,n); for(k=0,n,T[1+n,1+k]=0); forvec(x=vector(n*n,i,[0,1]), for(i=1,n, for(j=1,n,mm[i,j]=x[i+n*(j-1)])); T[1+n,1+matrank(mm)]++); for(k=0,n,print1(T[1+n,1+k], if(k
6 more terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 17 2004
A064231
Triangle read by rows: T(n,k) = number of rational (+1,-1) matrices of rank k (n >= 1, 1 <= k <= n).
Original entry on oeis.org
2, 8, 8, 32, 288, 192, 128, 6272, 36864, 22272, 512, 115200, 3456000, 18432000, 11550720, 2048, 1968128, 243302400, 6471168000, 36373708800, 25629327360, 8192, 32514048, 14809546752, 1557061632000, 43378316083200, 281770208133120
Offset: 1
2; 8,8; 32,288,192; 128,6272,36864,22272; ...
- J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.
-
T=matrix(4,4); { for(n=1,4, mm=matrix(n,n); for(k=1,n, T[n,k]=0); forvec(x=vector(n*n,i,[0,1]), for(i=1,n, for(j=1,n,mm[i,j]=(-1)^x[i+n*(j-1)])); T[n,matrank(mm)]++); for(k=1,n,print1(T[n,k], if(k
Offset changed to 1 by
T. D. Noe, Mar 02 2011
A116506
Number of singular n X n rational {0,1}-matrices with no zero rows.
Original entry on oeis.org
0, 3, 169, 28065, 16114831, 33686890209, 262530190180063, 7717643584470877185
Offset: 1
A116527
Number of singular n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct and all columns distinct, up to permutation of rows.
Original entry on oeis.org
0, 0, 0, 75, 22365, 13303500, 21058940420, 98692672142610
Offset: 1
A116507
Number of singular n X n rational {0,1}-matrices with no zero rows or columns.
Original entry on oeis.org
0, 1, 91, 18943, 12483601, 28530385447, 235529139302185, 7183142489571818623
Offset: 1
Showing 1-10 of 10 results.
Comments