cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086899 Number of real n X n invertible symmetric (0,1) matrices.

Original entry on oeis.org

1, 4, 32, 528, 18596, 1280468, 180452552, 49970930912, 27618771417328, 30088644932329872
Offset: 1

Views

Author

Wouter Meeussen, Aug 23 2003

Keywords

Examples

			For n = 2 the 4 matrices are 10/01, 01/10, 11/10, 01/11.
		

Crossrefs

Programs

  • Mathematica
    triamat[li_List] := (*see A086900*); Table[it=triamat/@IntegerDigits[Range[0, -1+2^(n(n+1)/2)], 2, n(n+1)/2]; Count[it, (q_)?MatrixQ/;(Det[q]=!=0)], {n, 5}]

Formula

a(n) = A086900(n) + A118996(n) = 2^(n*(n+1)/2) - A086906(n). - Max Alekseyev, Jun 12 2025

Extensions

a(6) and a(7) from Giovanni Resta, May 08 2006
a(8)-a(10) from Max Alekseyev, Jun 17 2025

A086900 Number of real n X n symmetric (0,1) matrices with positive determinant.

Original entry on oeis.org

1, 1, 5, 338, 14186, 526876, 52658844, 28076946520, 18518751047608, 13637385623943256
Offset: 1

Views

Author

Wouter Meeussen, Aug 23 2003

Keywords

Examples

			For n = 2 the only example is the identity matrix.
		

Crossrefs

Programs

  • Mathematica
    triamat[li_List] := Block[{len=Sqrt[8Length[li]+1]/2-1/2}, If[IntegerQ[len], Part[li, # ]& /@ Table[If[j>i, j(j-1)/2+i, i(i-1)/2+j], {i, len}, {j, len}], li]]; Table[it=triamat/@ IntegerDigits[Range[0, -1+2^(n(n+1)/2)], 2, n(n+1)/2]; Count[it, (q_)?MatrixQ/;(Det[q]>0)], {n, 5}]

Formula

a(n) = A086899(n) - A118996(n) = 2^(n*(n+1)/2) - A086906(n) - A118996(n). - Max Alekseyev, Jun 12 2025

Extensions

a(6)-a(7) from Giovanni Resta, May 08 2006
a(8)-a(10) from Max Alekseyev, Jun 17 2025

A119010 Number of symmetric n X n (+1,-1)-matrices over the reals with zero permanent.

Original entry on oeis.org

0, 4, 0, 192, 8960, 371200, 0, 4081029120, 1414035671040
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118996 Number of real n X n symmetric (0,1) matrices with negative determinant.

Original entry on oeis.org

0, 3, 27, 190, 4410, 753592, 127793708, 21893984392, 9100020369720, 16451259308386616
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = A086899(n) - A086900(n) = 2^(n*(n+1)/2) - A086906(n) - A086900(n). - Max Alekseyev, Jun 12 2025

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A118989 Number of symmetric n X n (0,1)-matrices over the reals with zero permanent.

Original entry on oeis.org

1, 3, 25, 271, 6881, 254911, 20903681, 2725061631, 771426498049
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = 2^(n*(n+1)/2) - A118991(n) = 2^A000217(n) - A118991(n) = A006125(n+1) - A118991(n). - Max Alekseyev, Apr 22 2010; corrected by Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 26 2010

Extensions

a(8)-a(9) from Max Alekseyev, Jun 18 2025

A118990 Number of symmetric singular n X n (+1,-1) matrices over the reals.

Original entry on oeis.org

0, 4, 32, 512, 15872, 907008, 104535552, 22523623424, 9599255461888, 7747175087620096
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Formula

a(n) = 2^(n*(n+1)/2) - A118994(n) - A118997(n) = 2^(n*(n+1)/2) - A118992(n). - Max Alekseyev, May 08 2009

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025

A119008 Number of n X n real symmetric (0,1)-matrices with determinant = 1.

Original entry on oeis.org

1, 1, 4, 268, 9456, 301306, 24846368, 8946957244, 4175660906560, 2421067614753916
Offset: 1

Views

Author

Giovanni Resta, May 08 2006

Keywords

Crossrefs

Extensions

a(8)-a(10) from Max Alekseyev, Jun 17 2025
Showing 1-7 of 7 results.