cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A140051 L.g.f.: A(x) = log(G(x)) where G(x) = g.f. of A060690(n) = C(2^n+n-1,n).

Original entry on oeis.org

2, 16, 308, 14488, 1843232, 714580528, 917085102992, 4076698622618144, 64300718807613519968, 3649606003781552269341376, 752497581806524062754828125952, 567745591696108934746387351412913664
Offset: 1

Views

Author

Paul D. Hanna, May 02 2008

Keywords

Examples

			A(x) = 2*x + 16*x^2/2 + 308*x^3/3 + 14488*x^4/4 + 1843232*x^5/5 +...
A(x) = log(G(x)) where G(x) = g.f. of A060690:
G(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 +... + C(2^n+n-1,n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n,binomial(2^k+k-1,k)*x^k)+x*O(x^n)),n)}

Formula

L.g.f.: A(x) = log[ Sum_{n>=0} (-log(1 - 2^n*x))^n/n! ].

A014070 a(n) = binomial(2^n, n).

Original entry on oeis.org

1, 2, 6, 56, 1820, 201376, 74974368, 94525795200, 409663695276000, 6208116950265950720, 334265867498622145619456, 64832175068736596027448301568, 45811862025512780638750907861652480, 119028707533461499951701664512286557511680
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n X n (0,1) matrices with distinct rows modulo rows permutations. - Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 13 2003

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), this sequence (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).

Programs

  • Magma
    [Binomial(2^n, n): n in [0..25]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    A014070:= n-> binomial(2^n,n); seq(A014070(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n,n],{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
  • PARI
    a(n)=binomial(2^n,n)
    
  • PARI
    /* G.f. A(x) as Sum of Series: */
    a(n)=polcoeff(sum(k=0,n,log(1+2^k*x +x*O(x^n))^k/k!),n) \\ Paul D. Hanna, Dec 28 2007
    
  • PARI
    {a(n) = (1/n!) * sum(k=0,n, stirling(n, k, 1) * 2^(n*k) )}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Feb 05 2023
    
  • Sage
    [binomial(2^n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021

Formula

G.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x)^n / n!. - Paul D. Hanna, Dec 28 2007
a(n) = (1/n!) * Sum_{k=0..n} Stirling1(n, k) * 2^(n*k). - Paul D. Hanna, Feb 05 2023
From Vaclav Kotesovec, Jul 02 2016: (Start)
a(n) ~ 2^(n^2) / n!.
a(n) ~ 2^(n^2 - 1/2) * exp(n) / (sqrt(Pi) * n^(n+1/2)).
(End)

A136556 a(n) = binomial(2^n - 1, n).

Original entry on oeis.org

1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2008; Paul Hanna and Vladeta Jovovic, Jan 15 2008

Keywords

Comments

Number of n x n binary matrices without zero rows and with distinct rows up to permutation of rows, cf. A014070.
Row 0 of square array A136555.
From Gus Wiseman, Dec 19 2023: (Start)
Also the number of n-element sets of nonempty subsets of {1..n}, or set-systems with n vertices and n edges (not necessarily covering). The covering case is A054780. For example, the a(3) = 35 set-systems are:
{1}{2}{3} {1}{2}{12} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{13} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{2}{23} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{12} {1}{12}{23} {2}{12}{123}
{1}{3}{13} {1}{13}{23} {2}{13}{123}
{1}{3}{23} {2}{3}{123} {2}{23}{123}
{2}{3}{12} {2}{12}{13} {3}{12}{123}
{2}{3}{13} {2}{12}{23} {3}{13}{123}
{2}{3}{23} {2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
Of these, only {{1},{2},{1,2}}, {{1},{3},{1,3}}, and {{2},{3},{2,3}} do not cover the vertex set.
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
		

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
The covering case A054780 has binomial transform A367916, ranks A367917.
Connected graphs of this type are A057500, unlabeled A001429.
Graphs of this type are A116508, covering A367863, unlabeled A006649.
A003465 counts set-systems covering {1..n}, unlabeled A055621.
A058891 counts set-systems, connected A323818, without singletons A016031.

Programs

  • Magma
    [Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
    
  • Maple
    A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
    Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
  • PARI
    {a(n) = binomial(2^n-1,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* As coefficient of x^n in the g.f.: */
    {a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • Python
    from math import comb
    def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
  • Sage
    [binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2^n,k).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k) * (2^n-1)^k.
G.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n! * (1 + 2^n*x)).
a(n) ~ 2^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016

Extensions

Edited by N. J. A. Sloane, Jan 26 2008

A016121 Number of sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.

Original entry on oeis.org

1, 2, 5, 17, 86, 698, 9551, 226592, 9471845, 705154187, 94285792211, 22807963405043, 10047909839840456, 8110620438438750647, 12062839548612627177590, 33226539134943667506533207, 170288915434579567358828997806, 1630770670148598007261992936663653
Offset: 0

Views

Author

Keywords

Comments

Number of n X n binary symmetric matrices with rows, considered as binary numbers, in nondecreasing order. - R. H. Hardin, May 30 2008
Also, number of (n+1) X (n+1) binary symmetric matrices with zero main diagonal and rows, considered as binary numbers, in nondecreasing order. - Max Alekseyev, Feb 06 2022

Crossrefs

Row sums of triangle A097712.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k > n, 0, If[n == k, 1, If[k == 0, 1, T[n - 1, k] + Sum[T[n - 1, j] T[j, k - 1], {j, 0, n - 1}]]]];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 02 2019 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A097712
        if k<0 or k>n: return 0
        elif k==0 or k==n: return 1
        else: return T(n-1, k) + sum(T(n-1, j)*T(j, k-1) for j in range(n))
    def A016121(n): return sum(T(n,k) for k in range(n+1))
    [A016121(n) for n in range(31)] # G. C. Greubel, Feb 21 2024

Formula

a(n) = Sum_{k=0..n} A097712(n, k). - Paul D. Hanna, Aug 24 2004
Equals the binomial transform of A008934 (number of tournament sequences): a(n) = Sum_{k=0..n} C(n, k)*A008934(k). - Paul D. Hanna, Sep 18 2005

A136555 Square array, read by antidiagonals, where T(n,k) = binomial(2^k + n-1, k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 35, 1, 4, 10, 56, 1365, 1, 5, 15, 84, 1820, 169911, 1, 6, 21, 120, 2380, 201376, 67945521, 1, 7, 28, 165, 3060, 237336, 74974368, 89356415775, 1, 8, 36, 220, 3876, 278256, 82598880, 94525795200, 396861704798625, 1, 9, 45, 286, 4845, 324632, 90858768, 99949406400, 409663695276000, 6098989894499557055
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2008

Keywords

Comments

Let vector R_{n} equal row n of this array; then R_{n+1} = P * R_{n} for n>=0, where triangle P = A132625 such that row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.

Examples

			Square array begins:
  1, 1,  3,  35, 1365, 169911,  67945521,  89356415775, ... A136556;
  1, 2,  6,  56, 1820, 201376,  74974368,  94525795200, ... A014070;
  1, 3, 10,  84, 2380, 237336,  82598880,  99949406400, ... A136505;
  1, 4, 15, 120, 3060, 278256,  90858768, 105637584000, ... A136506;
  1, 5, 21, 165, 3876, 324632,  99795696, 111600996000, ... ;
  1, 6, 28, 220, 4845, 376992, 109453344, 117850651776, ... ;
  1, 7, 36, 286, 5985, 435897, 119877472, 124397910208, ... ;
  1, 8, 45, 364, 7315, 501942, 131115985, 131254487936, ... ;
  ...
Form column vector R_{n} out of row n of this array;
then row n+1 can be generated from row n by:
R_{n+1} = P * R_{n} for n>=0,
where triangular matrix P = A132625 begins:
        1;
        1,      1;
        2,      1,     1;
       14,      4,     1,    1;
      336,     60,     8,    1,  1;
    25836,   2960,   248,   16,  1, 1;
  6251504, 454072, 24800, 1008, 32, 1, 1; ...
where row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.
		

Crossrefs

Diagonals: A060690, A132683, A132684.
Cf. A136557 (antidiagonal sums).
Cf. A132625.

Programs

  • Magma
    [Binomial(2^k +n-k-1, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A136555:= (n,k) -> binomial(2^k +n-k-1, k); seq(seq(A136555(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^k +n-k-1, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2021 *)
  • PARI
    T(n,k)=binomial(2^k+n-1,k)
    
  • PARI
    /* Coefficient of x^k in g.f. of row n: */ T(n,k)=polcoeff(sum(i=0,k,(1+2^i*x+x*O(x^k))^(n-1)*log((1+2^i*x)+x*O(x^k))^i/i!),k)
    
  • Sage
    flatten([[binomial(2^k +n-k-1, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 14 2021
    

Formula

G.f. for row n: Sum_{i>=0} (1 + 2^i*x)^(n-1) * log(1 + 2^i*x)^i / i!.
From G. C. Greubel, Mar 14 2021: (Start)
For the square array:
T(n, n) = A060690(n).
T(n+1, n) = A132683(n), T(n+2, n) = A132684(n).
T(2*n+1, n) = A132685(n), T(2*n, n) = A132686(n).
T(3*n+2, n) = A132689(n), T(3*n+1, n) = A132688(n), T(3*n, n) = A132687(n).
For the number triangle:
t(n, k) = T(n-k, k) = binomial(2^k + n - k -1, k).
Sum_{k=0..n} t(n,k) = Sum_{k=0..n} T(n-k, k) = A136557(n). (End)

A163767 a(n) = tau_{n}(n) = number of ordered n-factorizations of n.

Original entry on oeis.org

1, 2, 3, 10, 5, 36, 7, 120, 45, 100, 11, 936, 13, 196, 225, 3876, 17, 3078, 19, 4200, 441, 484, 23, 62400, 325, 676, 3654, 11368, 29, 27000, 31, 376992, 1089, 1156, 1225, 443556, 37, 1444, 1521, 459200, 41, 74088, 43, 43560, 46575, 2116, 47, 11995200, 1225
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2009

Keywords

Comments

Also the number of length n - 1 chains of divisors of n. - Gus Wiseman, May 07 2021

Examples

			Successive Dirichlet self-convolutions of the all 1's sequence begin:
(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... (A000012)
1,(2),2,3,2,4,2,4,3,4,2,6,2,4,4,5,... (A000005)
1,3,(3),6,3,9,3,10,6,9,3,18,3,9,9,15,... (A007425)
1,4,4,(10),4,16,4,20,10,16,4,40,4,16,16,35,... (A007426)
1,5,5,15,(5),25,5,35,15,25,5,75,5,25,25,70,... (A061200)
1,6,6,21,6,(36),6,56,21,36,6,126,6,36,36,126,... (A034695)
1,7,7,28,7,49,(7),84,28,49,7,196,7,49,49,210,... (A111217)
1,8,8,36,8,64,8,(120),36,64,8,288,8,64,64,330,... (A111218)
1,9,9,45,9,81,9,165,(45),81,9,405,9,81,81,495,... (A111219)
1,10,10,55,10,100,10,220,55,(100),10,550,10,100,... (A111220)
1,11,11,66,11,121,11,286,66,121,(11),726,11,121,... (A111221)
1,12,12,78,12,144,12,364,78,144,12,(936),12,144,... (A111306)
...
where the main diagonal forms this sequence.
From _Gus Wiseman_, May 07 2021: (Start)
The a(1) = 1 through a(5) = 5 chains of divisors:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)
      (2)  (3/1)  (2/1/1)  (5/1/1/1)
           (3/3)  (2/2/1)  (5/5/1/1)
                  (2/2/2)  (5/5/5/1)
                  (4/1/1)  (5/5/5/5)
                  (4/2/1)
                  (4/2/2)
                  (4/4/1)
                  (4/4/2)
                  (4/4/4)
(End)
		

Crossrefs

Main diagonal of A077592.
Diagonal n = k + 1 of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005 counts divisors.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts nonempty strict chains of divisors of n.
A251683/A334996 count strict nonempty length-k divisor chains from n to 1.
A337255 counts strict length-k chains of divisors starting with n.
A339564 counts factorizations with a selected factor.
A343662 counts strict length-k chains of divisors (row sums: A337256).
Cf. A060690.

Programs

  • Mathematica
    Table[Times@@(Binomial[#+n-1,n-1]&/@FactorInteger[n][[All,2]]),{n,1,50}] (* Enrique Pérez Herrero, Dec 25 2013 *)
  • PARI
    {a(n,m=n)=if(n==1,1,if(m==1,1,sumdiv(n,d,a(d,1)*a(n/d,m-1))))}
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A163767(n): return prod(comb(n+e-1,e) for e in factorint(n).values()) # Chai Wah Wu, Jul 05 2024

Formula

a(p) = p for prime p.
a(n) = n^k when n is the product of k distinct primes (conjecture).
a(n) = n-th term of the n-th Dirichlet self-convolution of the all 1's sequence.
a(2^n) = A060690(n). - Alois P. Heinz, Jun 12 2024

A136505 a(n) = binomial(2^n + 1, n).

Original entry on oeis.org

1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, 422825581068000, 6318976181520699840, 337559127276933693852160, 65182103393445184131620004864, 45946437874792132748338425828443136
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), this sequence (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).

Programs

  • Magma
    [Binomial(2^n +1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A136505:= n-> binomial(2^n+1,n); seq(A136505(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+1,n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    {a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)}
    
  • Sage
    [binomial(2^n +1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

G.f.: A(x) = Sum_{n>=0} (1 + 2^n*x) * log(1 + 2^n*x)^n/n!.
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A136506 a(n) = binomial(2^n + 2, n).

Original entry on oeis.org

1, 4, 15, 120, 3060, 278256, 90858768, 105637584000, 436355999662176, 6431591598617108352, 340881559632021623909760, 65533747894341651530074060800, 46081376018330435634530315478453248
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), this sequence (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).

Programs

  • Magma
    [Binomial(2^n +2, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A136506:= n-> binomial(2^n+2,n); seq(A136506(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+2,n],{n,0,20}] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    {a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))^2*log(1+2^i*x +x*O(x^n))^i/i!),n)}
    
  • Sage
    [binomial(2^n +2, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

G.f.: A(x) = Sum_{n>=0} (1 + 2^n*x)^2 * log(1 + 2^n*x)^n/n!.
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A094223 Number of binary n X n matrices with all rows (columns) distinct, up to permutation of columns (rows).

Original entry on oeis.org

1, 2, 7, 68, 2251, 247016, 89254228, 108168781424, 451141297789858, 6625037125817801312, 348562672319990399962384, 66545827618461283102105245248, 46543235997095840080425299916917968, 120155975713532210671953821005746669185792, 1152009540439950050422144845158703009569109376384
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 28 2004

Keywords

Crossrefs

Main diagonal of A059584 and A059587, A060690, A088309.
Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k)*StirlingS1[n, k]*Binomial[2^k, n], {k, 0, n}]; (* or *) a[n_] := Sum[ StirlingS1[n, k]*Binomial[2^k + n - 1, n], {k, 0, n}]; Table[ a[n], {n, 0, 12}] (* Robert G. Wilson v, May 29 2004 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k+n-1, n)); \\ Michel Marcus, Dec 17 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*binomial(2^k, n).
a(n) = Sum_{k=0..n} Stirling1(n, k)*binomial(2^k+n-1, n).

Extensions

More terms from Robert G. Wilson v, May 29 2004
a(13) onwards from Andrew Howroyd, Jan 20 2024

A132683 a(n) = binomial(2^n + n, n).

Original entry on oeis.org

1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Examples

			From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ...
A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End)
		

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), this sequence (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.
Cf. A066384. - Paul D. Hanna, Feb 25 2009

Programs

  • Magma
    [Binomial(2^n +n, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A132683:= n-> binomial(2^n +n,n); seq(A132683(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    a(n)=binomial(2^n+n,n)
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
    
  • Sage
    [binomial(2^n +n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + 1).
G.f.: Sum_{n>=0} (-log(1 - 2^n*x))^n / ((1 - 2^n*x)*n!). - Paul D. Hanna, Feb 25 2009
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
Showing 1-10 of 31 results. Next