A014070
a(n) = binomial(2^n, n).
Original entry on oeis.org
1, 2, 6, 56, 1820, 201376, 74974368, 94525795200, 409663695276000, 6208116950265950720, 334265867498622145619456, 64832175068736596027448301568, 45811862025512780638750907861652480, 119028707533461499951701664512286557511680
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1), this sequence (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n, n): n in [0..25]]; // Vincenzo Librandi, Sep 13 2016
-
A014070:= n-> binomial(2^n,n); seq(A014070(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n,n],{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
-
a(n)=binomial(2^n,n)
-
/* G.f. A(x) as Sum of Series: */
a(n)=polcoeff(sum(k=0,n,log(1+2^k*x +x*O(x^n))^k/k!),n) \\ Paul D. Hanna, Dec 28 2007
-
{a(n) = (1/n!) * sum(k=0,n, stirling(n, k, 1) * 2^(n*k) )}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Feb 05 2023
-
[binomial(2^n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A060690
a(n) = binomial(2^n + n - 1, n).
Original entry on oeis.org
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2), this sequence (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:
-
Table[Binomial[2^n+n-1,n],{n,0,20}] (* Harvey P. Dale, Apr 19 2012 *)
-
a(n)=binomial(2^n+n-1,n)
-
{a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ Paul D. Hanna, Dec 29 2007
-
a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
-
from math import comb
def A060690(n): return comb((1<Chai Wah Wu, Jul 05 2024
-
[binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A136556
a(n) = binomial(2^n - 1, n).
Original entry on oeis.org
1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
{a(n) = binomial(2^n-1,n)}
for(n=0, 20, print1(a(n), ", "))
-
/* As coefficient of x^n in the g.f.: */
{a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
-
[binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A136505
a(n) = binomial(2^n + 1, n).
Original entry on oeis.org
1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, 422825581068000, 6318976181520699840, 337559127276933693852160, 65182103393445184131620004864, 45946437874792132748338425828443136
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0), this sequence (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136505:= n-> binomial(2^n+1,n); seq(A136505(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+1,n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
{a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)}
-
[binomial(2^n +1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A136506
a(n) = binomial(2^n + 2, n).
Original entry on oeis.org
1, 4, 15, 120, 3060, 278256, 90858768, 105637584000, 436355999662176, 6431591598617108352, 340881559632021623909760, 65533747894341651530074060800, 46081376018330435634530315478453248
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1), this sequence (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +2, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136506:= n-> binomial(2^n+2,n); seq(A136506(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+2,n],{n,0,20}] (* Harvey P. Dale, Jun 20 2011 *)
-
{a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))^2*log(1+2^i*x +x*O(x^n))^i/i!),n)}
-
[binomial(2^n +2, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132683
a(n) = binomial(2^n + n, n).
Original entry on oeis.org
1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ...
A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1), this sequence (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132683:= n-> binomial(2^n +n,n); seq(A132683(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
a(n)=binomial(2^n+n,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132684
a(n) = binomial(2^n + n + 1, n).
Original entry on oeis.org
1, 4, 21, 220, 5985, 501942, 143218999, 145944307080, 542150225230185, 7398714129087308170, 372134605932348010322571, 69146263065062394421802892300, 47589861944854471977019273909187085
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 4*x + 21*x^2 + 220*x^3 + 5985*x^4 + 501942*x^5 +...
A(x) = 1/(1-x)^2 - log(1-2x)/(1-2x)^2 + log(1-4x)^2/((1-4x)^2*2!) - log(1-8x)^3/((1-8x)^2*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0), this sequence (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n+1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132684:= n-> binomial(2^n +n+1, n); seq(A132684(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n+1,n],{n,0,20}] (* Harvey P. Dale, Nov 10 2011 *)
-
a(n)=binomial(2^n+n+1,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))^2*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n+1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132685
a(n) = binomial(2^n + 2*n, n).
Original entry on oeis.org
1, 4, 28, 364, 10626, 850668, 218618940, 198773423848, 669741609663270, 8493008777332033900, 405943250253048290447028, 72938914603968404495709630360, 49143490709866058459392200362497820
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1), this sequence (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n+2*n,n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132695:= n-> binomial(2^n +2*n,n); seq(A132685(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+2n,n],{n,0,20}] (* Harvey P. Dale, Jun 01 2016 *)
-
a(n)=binomial(2^n+2*n,n)
-
[binomial(2^n+2*n,n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132686
a(n) = binomial(2^n + 2*n + 1, n).
Original entry on oeis.org
1, 5, 36, 455, 12650, 962598, 237093780, 209004408899, 689960224294614, 8639439963148103450, 409865407260324119340236, 73328394245057556170201283726, 49287010273876375495535472789937580
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0), this sequence (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +2*n +1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n +2*n +1, n], {n,0,20}] (* G. C. Greubel, Mar 13 2021 *)
-
a(n)=binomial(2^n+2*n+1,n)
-
[binomial(2^n +2*n +1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132687
a(n) = binomial(2^n + 3*n - 1, n).
Original entry on oeis.org
1, 4, 36, 560, 17550, 1370754, 324540216, 267212177232, 822871715492970, 9728874233306696390, 442491588454024774291770, 76919746769405407508866898400, 50743487119356450255156023756871000
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1), this sequence (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +3*n -1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n+3n-1,n],{n,0,20}] (* Harvey P. Dale, Sep 07 2017 *)
-
a(n)=binomial(2^n+3*n-1,n)
-
[binomial(2^n +3*n -1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
Showing 1-10 of 15 results.
Comments