cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A014070 a(n) = binomial(2^n, n).

Original entry on oeis.org

1, 2, 6, 56, 1820, 201376, 74974368, 94525795200, 409663695276000, 6208116950265950720, 334265867498622145619456, 64832175068736596027448301568, 45811862025512780638750907861652480, 119028707533461499951701664512286557511680
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n X n (0,1) matrices with distinct rows modulo rows permutations. - Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 13 2003

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), this sequence (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).

Programs

  • Magma
    [Binomial(2^n, n): n in [0..25]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    A014070:= n-> binomial(2^n,n); seq(A014070(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n,n],{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
  • PARI
    a(n)=binomial(2^n,n)
    
  • PARI
    /* G.f. A(x) as Sum of Series: */
    a(n)=polcoeff(sum(k=0,n,log(1+2^k*x +x*O(x^n))^k/k!),n) \\ Paul D. Hanna, Dec 28 2007
    
  • PARI
    {a(n) = (1/n!) * sum(k=0,n, stirling(n, k, 1) * 2^(n*k) )}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Feb 05 2023
    
  • Sage
    [binomial(2^n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021

Formula

G.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x)^n / n!. - Paul D. Hanna, Dec 28 2007
a(n) = (1/n!) * Sum_{k=0..n} Stirling1(n, k) * 2^(n*k). - Paul D. Hanna, Feb 05 2023
From Vaclav Kotesovec, Jul 02 2016: (Start)
a(n) ~ 2^(n^2) / n!.
a(n) ~ 2^(n^2 - 1/2) * exp(n) / (sqrt(Pi) * n^(n+1/2)).
(End)

A060690 a(n) = binomial(2^n + n - 1, n).

Original entry on oeis.org

1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

Keywords

Comments

Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e., the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.
Row sums of A220886. - Geoffrey Critzer, Nov 20 2014

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), this sequence (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Main diagonal of A092056.
Central terms of A137153.

Programs

  • Magma
    [Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
    
  • Maple
    with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:
  • Mathematica
    Table[Binomial[2^n+n-1,n],{n,0,20}] (* Harvey P. Dale, Apr 19 2012 *)
  • PARI
    a(n)=binomial(2^n+n-1,n)
    
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ Paul D. Hanna, Dec 29 2007
    
  • PARI
    a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
    
  • Python
    from math import comb
    def A060690(n): return comb((1<Chai Wah Wu, Jul 05 2024
  • Sage
    [binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n).
a(n) = (1/n!)*Sum_{k=0..n} ( (-1)^(n-k)*Stirling1(n, k)*2^(k*n) ). - Vladeta Jovovic, May 28 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008
a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008
G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
a(n) = A163767(2^n). - Alois P. Heinz, Jun 12 2024

Extensions

More terms from James Sellers, Apr 20 2001
Edited by N. J. A. Sloane, Mar 17 2008

A136556 a(n) = binomial(2^n - 1, n).

Original entry on oeis.org

1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2008; Paul Hanna and Vladeta Jovovic, Jan 15 2008

Keywords

Comments

Number of n x n binary matrices without zero rows and with distinct rows up to permutation of rows, cf. A014070.
Row 0 of square array A136555.
From Gus Wiseman, Dec 19 2023: (Start)
Also the number of n-element sets of nonempty subsets of {1..n}, or set-systems with n vertices and n edges (not necessarily covering). The covering case is A054780. For example, the a(3) = 35 set-systems are:
{1}{2}{3} {1}{2}{12} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{13} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{2}{23} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{12} {1}{12}{23} {2}{12}{123}
{1}{3}{13} {1}{13}{23} {2}{13}{123}
{1}{3}{23} {2}{3}{123} {2}{23}{123}
{2}{3}{12} {2}{12}{13} {3}{12}{123}
{2}{3}{13} {2}{12}{23} {3}{13}{123}
{2}{3}{23} {2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
Of these, only {{1},{2},{1,2}}, {{1},{3},{1,3}}, and {{2},{3},{2,3}} do not cover the vertex set.
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
		

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
The covering case A054780 has binomial transform A367916, ranks A367917.
Connected graphs of this type are A057500, unlabeled A001429.
Graphs of this type are A116508, covering A367863, unlabeled A006649.
A003465 counts set-systems covering {1..n}, unlabeled A055621.
A058891 counts set-systems, connected A323818, without singletons A016031.

Programs

  • Magma
    [Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
    
  • Maple
    A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
    Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
  • PARI
    {a(n) = binomial(2^n-1,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* As coefficient of x^n in the g.f.: */
    {a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • Python
    from math import comb
    def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
  • Sage
    [binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2^n,k).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k) * (2^n-1)^k.
G.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n! * (1 + 2^n*x)).
a(n) ~ 2^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016

Extensions

Edited by N. J. A. Sloane, Jan 26 2008

A136555 Square array, read by antidiagonals, where T(n,k) = binomial(2^k + n-1, k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 35, 1, 4, 10, 56, 1365, 1, 5, 15, 84, 1820, 169911, 1, 6, 21, 120, 2380, 201376, 67945521, 1, 7, 28, 165, 3060, 237336, 74974368, 89356415775, 1, 8, 36, 220, 3876, 278256, 82598880, 94525795200, 396861704798625, 1, 9, 45, 286, 4845, 324632, 90858768, 99949406400, 409663695276000, 6098989894499557055
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2008

Keywords

Comments

Let vector R_{n} equal row n of this array; then R_{n+1} = P * R_{n} for n>=0, where triangle P = A132625 such that row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.

Examples

			Square array begins:
  1, 1,  3,  35, 1365, 169911,  67945521,  89356415775, ... A136556;
  1, 2,  6,  56, 1820, 201376,  74974368,  94525795200, ... A014070;
  1, 3, 10,  84, 2380, 237336,  82598880,  99949406400, ... A136505;
  1, 4, 15, 120, 3060, 278256,  90858768, 105637584000, ... A136506;
  1, 5, 21, 165, 3876, 324632,  99795696, 111600996000, ... ;
  1, 6, 28, 220, 4845, 376992, 109453344, 117850651776, ... ;
  1, 7, 36, 286, 5985, 435897, 119877472, 124397910208, ... ;
  1, 8, 45, 364, 7315, 501942, 131115985, 131254487936, ... ;
  ...
Form column vector R_{n} out of row n of this array;
then row n+1 can be generated from row n by:
R_{n+1} = P * R_{n} for n>=0,
where triangular matrix P = A132625 begins:
        1;
        1,      1;
        2,      1,     1;
       14,      4,     1,    1;
      336,     60,     8,    1,  1;
    25836,   2960,   248,   16,  1, 1;
  6251504, 454072, 24800, 1008, 32, 1, 1; ...
where row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.
		

Crossrefs

Diagonals: A060690, A132683, A132684.
Cf. A136557 (antidiagonal sums).
Cf. A132625.

Programs

  • Magma
    [Binomial(2^k +n-k-1, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A136555:= (n,k) -> binomial(2^k +n-k-1, k); seq(seq(A136555(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^k +n-k-1, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2021 *)
  • PARI
    T(n,k)=binomial(2^k+n-1,k)
    
  • PARI
    /* Coefficient of x^k in g.f. of row n: */ T(n,k)=polcoeff(sum(i=0,k,(1+2^i*x+x*O(x^k))^(n-1)*log((1+2^i*x)+x*O(x^k))^i/i!),k)
    
  • Sage
    flatten([[binomial(2^k +n-k-1, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 14 2021
    

Formula

G.f. for row n: Sum_{i>=0} (1 + 2^i*x)^(n-1) * log(1 + 2^i*x)^i / i!.
From G. C. Greubel, Mar 14 2021: (Start)
For the square array:
T(n, n) = A060690(n).
T(n+1, n) = A132683(n), T(n+2, n) = A132684(n).
T(2*n+1, n) = A132685(n), T(2*n, n) = A132686(n).
T(3*n+2, n) = A132689(n), T(3*n+1, n) = A132688(n), T(3*n, n) = A132687(n).
For the number triangle:
t(n, k) = T(n-k, k) = binomial(2^k + n - k -1, k).
Sum_{k=0..n} t(n,k) = Sum_{k=0..n} T(n-k, k) = A136557(n). (End)

A136505 a(n) = binomial(2^n + 1, n).

Original entry on oeis.org

1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, 422825581068000, 6318976181520699840, 337559127276933693852160, 65182103393445184131620004864, 45946437874792132748338425828443136
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), this sequence (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).

Programs

  • Magma
    [Binomial(2^n +1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A136505:= n-> binomial(2^n+1,n); seq(A136505(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+1,n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    {a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)}
    
  • Sage
    [binomial(2^n +1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

G.f.: A(x) = Sum_{n>=0} (1 + 2^n*x) * log(1 + 2^n*x)^n/n!.
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A132683 a(n) = binomial(2^n + n, n).

Original entry on oeis.org

1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Examples

			From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ...
A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End)
		

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), this sequence (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.
Cf. A066384. - Paul D. Hanna, Feb 25 2009

Programs

  • Magma
    [Binomial(2^n +n, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A132683:= n-> binomial(2^n +n,n); seq(A132683(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    a(n)=binomial(2^n+n,n)
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
    
  • Sage
    [binomial(2^n +n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + 1).
G.f.: Sum_{n>=0} (-log(1 - 2^n*x))^n / ((1 - 2^n*x)*n!). - Paul D. Hanna, Feb 25 2009
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A132684 a(n) = binomial(2^n + n + 1, n).

Original entry on oeis.org

1, 4, 21, 220, 5985, 501942, 143218999, 145944307080, 542150225230185, 7398714129087308170, 372134605932348010322571, 69146263065062394421802892300, 47589861944854471977019273909187085
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Examples

			From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 4*x + 21*x^2 + 220*x^3 + 5985*x^4 + 501942*x^5 +...
A(x) = 1/(1-x)^2 - log(1-2x)/(1-2x)^2 + log(1-4x)^2/((1-4x)^2*2!) - log(1-8x)^3/((1-8x)^2*3!) +- ... (End)
		

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), this sequence (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.
Cf. A066384. - Paul D. Hanna, Feb 25 2009

Programs

  • Magma
    [Binomial(2^n +n+1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A132684:= n-> binomial(2^n +n+1, n); seq(A132684(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+n+1,n],{n,0,20}] (* Harvey P. Dale, Nov 10 2011 *)
  • PARI
    a(n)=binomial(2^n+n+1,n)
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))^2*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
    
  • Sage
    [binomial(2^n +n+1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + 2).
G.f.: Sum_{n>=0} (-log(1 - 2^n*x))^n / ((1 - 2^n*x)^2*n!). - Paul D. Hanna, Feb 25 2009
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A132685 a(n) = binomial(2^n + 2*n, n).

Original entry on oeis.org

1, 4, 28, 364, 10626, 850668, 218618940, 198773423848, 669741609663270, 8493008777332033900, 405943250253048290447028, 72938914603968404495709630360, 49143490709866058459392200362497820
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), this sequence (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.

Programs

  • Magma
    [Binomial(2^n+2*n,n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A132695:= n-> binomial(2^n +2*n,n); seq(A132685(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^n+2n,n],{n,0,20}] (* Harvey P. Dale, Jun 01 2016 *)
  • PARI
    a(n)=binomial(2^n+2*n,n)
    
  • Sage
    [binomial(2^n+2*n,n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + n + 1).

A132686 a(n) = binomial(2^n + 2*n + 1, n).

Original entry on oeis.org

1, 5, 36, 455, 12650, 962598, 237093780, 209004408899, 689960224294614, 8639439963148103450, 409865407260324119340236, 73328394245057556170201283726, 49287010273876375495535472789937580
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), this sequence (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.

Programs

  • Magma
    [Binomial(2^n +2*n +1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
  • Mathematica
    Table[Binomial[2^n +2*n +1, n], {n,0,20}] (* G. C. Greubel, Mar 13 2021 *)
  • PARI
    a(n)=binomial(2^n+2*n+1,n)
    
  • Sage
    [binomial(2^n +2*n +1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + n + 2).

A132687 a(n) = binomial(2^n + 3*n - 1, n).

Original entry on oeis.org

1, 4, 36, 560, 17550, 1370754, 324540216, 267212177232, 822871715492970, 9728874233306696390, 442491588454024774291770, 76919746769405407508866898400, 50743487119356450255156023756871000
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), this sequence (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.

Programs

  • Magma
    [Binomial(2^n +3*n -1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
  • Mathematica
    Table[Binomial[2^n+3n-1,n],{n,0,20}] (* Harvey P. Dale, Sep 07 2017 *)
  • PARI
    a(n)=binomial(2^n+3*n-1,n)
    
  • Sage
    [binomial(2^n +3*n -1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + 2*n).
Showing 1-10 of 13 results. Next