A097712 Lower triangular matrix T, read by rows, such that T(n,0) = 1 and T(n,k) = T(n-1,k) + T^2(n-1,k-1) for k>0, where T^2 is the matrix square of T.
1, 1, 1, 1, 3, 1, 1, 8, 7, 1, 1, 25, 44, 15, 1, 1, 111, 346, 208, 31, 1, 1, 809, 4045, 3720, 912, 63, 1, 1, 10360, 77351, 99776, 35136, 3840, 127, 1, 1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255, 1, 1, 9708797, 145895764, 319822055, 189724354, 37329584, 2608864, 64256, 511, 1
Offset: 0
Examples
T(5,1) = T(4,1) + T^2(4,0) = 25 + 86 = 111. T(5,2) = T(4,2) + T^2(4,1) = 44 + 302 = 346. T(5,3) = T(4,3) + T^2(4,2) = 15 + 193 = 208. Rows of T begin: 1; 1, 1; 1, 3, 1; 1, 8, 7, 1; 1, 25, 44, 15, 1; 1, 111, 346, 208, 31, 1; 1, 809, 4045, 3720, 912, 63, 1; 1, 10360, 77351, 99776, 35136, 3840, 127, 1; 1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255, 1; Rows of T^2 begin: 1; 2, 1; 5, 6, 1; 17, 37, 14, 1; 86, 302, 193, 30, 1; 698, 3699, 3512, 881, 62, 1; 9551, 73306, 96056, 34224, 3777, 126, 1; 226592, 2458364, 4241473, 1997752, 305136, 15681, 254, 1; Column 0 of T^2 forms A016121. Row sums of T^2 form the first differences of A016121.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[n < 0 || k > n, 0, If[n == k, 1, If[k == 0, 1, T[n - 1, k] + Sum[T[n - 1, j] T[j, k - 1], {j, 0, n - 1}]]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2019 *)
-
PARI
T(n,k)=if(n<0 || k>n,0,if(n==k,1,if(k==0,1, T(n-1,k)+sum(j=0,n-1,T(n-1,j)*T(j,k-1));)))
-
SageMath
@CachedFunction def T(n,k): # T = A097712 if k<0 or k>n: return 0 elif k==0 or k==n: return 1 else: return T(n-1,k) + sum(T(n-1,j)*T(j,k-1) for j in range(n)) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 20 2024
Comments