cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A097712 Lower triangular matrix T, read by rows, such that T(n,0) = 1 and T(n,k) = T(n-1,k) + T^2(n-1,k-1) for k>0, where T^2 is the matrix square of T.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 7, 1, 1, 25, 44, 15, 1, 1, 111, 346, 208, 31, 1, 1, 809, 4045, 3720, 912, 63, 1, 1, 10360, 77351, 99776, 35136, 3840, 127, 1, 1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255, 1, 1, 9708797, 145895764, 319822055, 189724354, 37329584, 2608864, 64256, 511, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2004

Keywords

Comments

This triangle has the same row sums and first column terms as in rows 2^n, for n>=0, of triangle A093662.

Examples

			T(5,1) = T(4,1) + T^2(4,0) = 25 + 86 = 111.
T(5,2) = T(4,2) + T^2(4,1) = 44 + 302 = 346.
T(5,3) = T(4,3) + T^2(4,2) = 15 + 193 = 208.
Rows of T begin:
  1;
  1,      1;
  1,      3,       1;
  1,      8,       7,       1;
  1,     25,      44,      15,       1;
  1,    111,     346,     208,      31,      1;
  1,    809,    4045,    3720,     912,     63,     1;
  1,  10360,   77351,   99776,   35136,   3840,   127,   1;
  1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255, 1;
Rows of T^2 begin:
       1;
       2,       1;
       5,       6,       1;
      17,      37,      14,       1;
      86,     302,     193,      30,      1;
     698,    3699,    3512,     881,     62,     1;
    9551,   73306,   96056,   34224,   3777,   126,   1;
  226592, 2458364, 4241473, 1997752, 305136, 15681, 254, 1;
Column 0 of T^2 forms A016121.
Row sums of T^2 form the first differences of A016121.
		

Crossrefs

Cf. A016121 (row sums), A093662, A097710, A097713.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k > n, 0, If[n == k, 1, If[k == 0, 1, T[n - 1, k] + Sum[T[n - 1, j] T[j, k - 1], {j, 0, n - 1}]]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    T(n,k)=if(n<0 || k>n,0,if(n==k,1,if(k==0,1, T(n-1,k)+sum(j=0,n-1,T(n-1,j)*T(j,k-1));)))
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A097712
        if k<0 or k>n: return 0
        elif k==0 or k==n: return 1
        else: return T(n-1,k) + sum(T(n-1,j)*T(j,k-1) for j in range(n))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 20 2024

Formula

T(n, k) = T(n-1, k) + Sum_{j=0..n-1} T(n-1, j)*T(j, k-1), with T(n, 0) = T(n, n) = 1.
T(n, 1) = A097713(n-1), n >= 1.
Sum_{k=0..n} T(n, k) = A016121(n) (row sums).

A125860 Rectangular table where column k equals row sums of matrix power A097712^k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 12, 4, 1, 1, 86, 69, 22, 5, 1, 1, 698, 612, 178, 35, 6, 1, 1, 9551, 8853, 2251, 365, 51, 7, 1, 1, 226592, 217041, 46663, 5990, 651, 70, 8, 1, 1, 9471845, 9245253, 1640572, 161525, 13131, 1057, 92, 9, 1, 1, 705154187
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Triangle A097712 satisfies: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1) for n > 0, k > 0, with A097712(n,0)=A097712(n,n)=1 for n >= 0. Column 1 equals A016121, which counts the sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.
T(2, n) = (n+1)*A005408(n) - Sum_{i=0..n} A001477(i) = (n+1)*(2*n+1) - A000217(n) = (n+1)*(3*n+2)/2; T(3, n) = (n+1)*A001106(n+1) - Sum_{i=0..n} A001477(i) = (n+1)*((n+1)*(7*n+2)/2) - A000217(n) = (n+1)*(7*n^2 + 8*n + 2)/2. - Bruno Berselli, Apr 25 2010

Examples

			Recurrence is illustrated by:
  T(4,1) = T(3,1) + T(3,2) = 17 + 69 = 86;
  T(4,2) = T(3,2) + T(3,3) + T(3,4) = 69 + 178 + 365 = 612;
  T(4,3) = T(3,3) + T(3,4) + T(3,5) + T(3,6) = 178 + 365 + 651 + 1057 = 2251.
Rows of this table begin:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,...;
  1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, ...;
  1, 17, 69, 178, 365, 651, 1057, 1604, 2313, 3205, 4301, 5622, 7189,..;
  1, 86, 612, 2251, 5990, 13131, 25291, 44402, 72711, 112780, 167486,..;
  1, 698, 8853, 46663, 161525, 435801, 996583, 2025458, 3768273, ...;
  1, 9551, 217041, 1640572, 7387640, 24530016, 66593821, 156664796, ...;
  1, 226592, 9245253, 100152049, 586285040, 2394413286, 7713533212, ...;
  1, 9471845, 695682342, 10794383587, 82090572095, 412135908606, ...;
  1, 705154187, 93580638024, 2079805452133, 20540291522675, ...;
  1, 94285792211, 22713677612832, 723492192295786, 9278896006526795,...;
  1, 22807963405043, 10025101876435413, 458149292979837523, ...;
  ...
where column k equals the row sums of matrix power A097712^k for k >= 0.
Triangle A097712 begins:
  1;
  1,      1;
  1,      3,       1;
  1,      8,       7,       1;
  1,     25,      44,      15,       1;
  1,    111,     346,     208,      31,      1;
  1,    809,    4045,    3720,     912,     63,     1;
  1,  10360,   77351,   99776,   35136,   3840,   127,   1;
  1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255; ...
where A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1);
e.g., A097712(5,2) = A097712(4,2) + [A097712^2](4,1) = 44 + 302 = 346.
Matrix square A097712^2 begins:
     1;
     2,     1;
     5,     6,     1;
    17,    37,    14,     1;
    86,   302,   193,    30,    1;
   698,  3699,  3512,   881,   62,   1;
  9551, 73306, 96056, 34224, 3777, 126, 1; ...
Matrix cube A097712^3 begins:
       1;
       3,      1;
      12,      9,      1;
      69,     87,     21,      1;
     612,   1146,    447,     45,    1;
    8853,  22944,  12753,   2019,   93,   1;
  217041, 744486, 549453, 120807, 8595, 189, 1; ...
		

Crossrefs

Cf. A097712; columns: A016121, A125862, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums). Variants: A125790, A125800.
Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) and similar: A081436, A005920, A005945, A006003. - Bruno Berselli, Apr 25 2010

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[Or[n == 0, k == 0], 1, Sum[T[n - 1, j + k], {j, 0, k}]];
    Table[T[#, k] &[n - k + 1], {n, 0, 9}, {k, 0, n + 1}] (* Michael De Vlieger, Dec 10 2024, after PARI *)
  • PARI
    T(n,k)=if(n==0 || k==0,1,sum(j=0,k,T(n-1,j+k)))

Formula

T(n,k) = Sum_{j=0..k} T(n-1, j+k) for n > 0, with T(0,n)=T(n,0)=1 for n >= 0.

A125859 Antidiagonal sums of table A125860.

Original entry on oeis.org

1, 2, 4, 10, 35, 184, 1531, 21080, 497017, 20533486, 1508839043, 199272672334, 47686000150774, 20817464210086523, 16678749474397158418, 24657143458135746104239, 67591557017940565183386368
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Crossrefs

A125861 Main diagonal of table A125860.

Original entry on oeis.org

1, 2, 12, 178, 5990, 435801, 66593821, 20997402098, 13512727916532, 17629371074833300, 46432767742317108086, 246240366959004185679198, 2624854986865673643625591411, 56179604057909797695704800461149
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Crossrefs

Cf. A125860; A097712; columns: A016121, A125862, A125863, A125864, A125865; A125859 (antidiagonal sums).

A125862 Column 2 of table A125860; also equals row sums of matrix power A097712^2.

Original entry on oeis.org

1, 3, 12, 69, 612, 8853, 217041, 9245253, 695682342, 93580638024, 22713677612832, 10025101876435413, 8100572528598910191, 12054728928174188426943, 33214476295395054879355617, 170255688895444623691322464599
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^3, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125863 Column 3 of table A125860; also equals row sums of matrix power A097712^3.

Original entry on oeis.org

1, 4, 22, 178, 2251, 46663, 1640572, 100152049, 10794383587, 2079805452133, 723492192295786, 458149292979837523, 531871667833026397222, 1138955362720160687114704, 4523369812874327770490887837
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^4, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125864 Column 4 of table A125860; also equals row sums of matrix power A097712^4.

Original entry on oeis.org

1, 5, 35, 365, 5990, 161525, 7387640, 586285040, 82090572095, 20540291522675, 9278896006526795, 7632398133742637255, 11514756687812563119530, 32063466203746720003813970, 165699104606274900865952221145
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^5, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125863, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125865 Column 5 of table A125860; also equals row sums of matrix power A097712^5.

Original entry on oeis.org

1, 6, 51, 651, 13131, 435801, 24530016, 2394413286, 412135908606, 126722253316281, 70336222713070656, 71088278975389204986, 131802456226253519662956, 451158681817567800972000111
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^6, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125863, A125864; A125861 (diagonal), A125859 (antidiagonal sums).

A093662 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n),M(n)^2]], with M(0) = [1].

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 2, 1, 5, 2, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 5, 2, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 5, 2, 0, 0, 4, 1
Offset: 1

Views

Author

Paul D. Hanna, Apr 08 2004

Keywords

Comments

Row sums form A093663, where A093663(2^n) = A016121(n) for n>=0. The 2^n-th row converges to A093664, where A093664(2^n+1) = A016121(n) for n>=0.

Examples

			Let M(n) be the lower triangular matrix formed from the first 2^n rows.
To generate M(3) from M(2), obtain the matrix square of M(2):
[1,0,0,0]^2=[1,0,0,0]
[1,1,0,0]...[2,1,0,0]
[1,0,1,0]...[2,0,1,0]
[1,1,2,1]...[5,2,4,1],
then M(3) is formed by starting with M(2) and appending M(2) to the bottom left and M(2)^2 to the bottom right:
[1],
[1,1],
[1,0,1],
[1,1,2,1],
..........
[1,0,0,0],[1],
[1,1,0,0],[2,1],
[1,0,1,0],[2,0,1],
[1,1,2,1],[5,2,4,1].
Repeating this process converges to triangle A093662.
		

Crossrefs

A351287 Number of symmetric 0-1 matrices with zero main diagonal and nondecreasing number of ones in the rows.

Original entry on oeis.org

1, 2, 4, 16, 84, 936, 16758, 602544, 37693734, 4588585904, 1016082688298, 436137488655846, 348748058993750616, 538461898813943437676
Offset: 1

Views

Author

Max Alekseyev, Feb 06 2022

Keywords

Comments

Also, number of graphs with vertices labeled 1, 2, ..., n such that their degrees are nondecreasing.

Crossrefs

Programs

  • PARI
    \\ See link in A295193 for GraphsByDegreeSeq.
    a(n)={my(M=GraphsByDegreeSeq(n,n,(p,r)->1)); sum(i=1, matsize(M)[1], my(u=Vec(M[i,1])); prod(j=1, #u, u[j]!)*M[i,2]/n!)} \\ Andrew Howroyd, Feb 06 2022
  • Sage
    def a351287(n): return sum(prod(factorial(e) for e in Partition((d+1 for d in G.degree_sequence())).to_exp()) // G.automorphism_group(return_group=False, order=True) for G in graphs(n))
    

Extensions

a(11)-a(14) from Andrew Howroyd, Feb 06 2022
Showing 1-10 of 17 results. Next