cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A125859 Antidiagonal sums of table A125860.

Original entry on oeis.org

1, 2, 4, 10, 35, 184, 1531, 21080, 497017, 20533486, 1508839043, 199272672334, 47686000150774, 20817464210086523, 16678749474397158418, 24657143458135746104239, 67591557017940565183386368
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Crossrefs

A125861 Main diagonal of table A125860.

Original entry on oeis.org

1, 2, 12, 178, 5990, 435801, 66593821, 20997402098, 13512727916532, 17629371074833300, 46432767742317108086, 246240366959004185679198, 2624854986865673643625591411, 56179604057909797695704800461149
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Crossrefs

Cf. A125860; A097712; columns: A016121, A125862, A125863, A125864, A125865; A125859 (antidiagonal sums).

A125862 Column 2 of table A125860; also equals row sums of matrix power A097712^2.

Original entry on oeis.org

1, 3, 12, 69, 612, 8853, 217041, 9245253, 695682342, 93580638024, 22713677612832, 10025101876435413, 8100572528598910191, 12054728928174188426943, 33214476295395054879355617, 170255688895444623691322464599
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^3, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125863 Column 3 of table A125860; also equals row sums of matrix power A097712^3.

Original entry on oeis.org

1, 4, 22, 178, 2251, 46663, 1640572, 100152049, 10794383587, 2079805452133, 723492192295786, 458149292979837523, 531871667833026397222, 1138955362720160687114704, 4523369812874327770490887837
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^4, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125864 Column 4 of table A125860; also equals row sums of matrix power A097712^4.

Original entry on oeis.org

1, 5, 35, 365, 5990, 161525, 7387640, 586285040, 82090572095, 20540291522675, 9278896006526795, 7632398133742637255, 11514756687812563119530, 32063466203746720003813970, 165699104606274900865952221145
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^5, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125863, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125865 Column 5 of table A125860; also equals row sums of matrix power A097712^5.

Original entry on oeis.org

1, 6, 51, 651, 13131, 435801, 24530016, 2394413286, 412135908606, 126722253316281, 70336222713070656, 71088278975389204986, 131802456226253519662956, 451158681817567800972000111
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^6, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125863, A125864; A125861 (diagonal), A125859 (antidiagonal sums).

A005945 Number of n-step mappings with 4 inputs.

Original entry on oeis.org

0, 1, 15, 60, 154, 315, 561, 910, 1380, 1989, 2755, 3696, 4830, 6175, 7749, 9570, 11656, 14025, 16695, 19684, 23010, 26691, 30745, 35190, 40044, 45325, 51051, 57240, 63910, 71079, 78765, 86986, 95760, 105105, 115039, 125580, 136746
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of x^4/4! in n-th iteration of exp(x)-1.

Examples

			G.f. = x + 15*x^2 + 60*x^3 + 154*x^4 + 315*x^5 + 561*x^6 + 910*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005920, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. [Bruno Berselli, Apr 25 2010]
Cf. A094952.

Programs

  • Magma
    I:=[0, 1, 15, 60]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi Jun 18 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,1,15,60},50] (* Vincenzo Librandi, Jun 18 2012 *)
    a[ n_] := 3 n^3 - 5/2 n^2 + 1/2 n; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = 3*n^3 - 5/2*n^2 + 1/2*n}; /* Michael Somos, Jan 23 2014 */
    

Formula

G.f.: x*(1+11*x+6*x^2)/(1-x)^4. a(n)=n*(3*n-1)*(2*n-1)/2.
For n>0, a(n) = n*A000567(n) - A000217(n-1). - Bruno Berselli, Apr 25 2010; Feb 01 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 18 2012
a(n) = -A094952(-n) for all n in Z. - Michael Somos, Jan 23 2014

Extensions

Edited by Michael Somos, Oct 29 2002

A005920 Tricapped prism numbers.

Original entry on oeis.org

1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
Offset: 0

Views

Author

Keywords

Comments

a(n) = (n+1)*A000326(n+1) - Sum_{i=0...n} A001477(i) = (n+1)*((n+1)*(3*n+2)/2) - A000217(n) = (n+1)*(3*n^2+4n+2)/2. - Bruno Berselli, Apr 25 2010
Also central terms of triangle A093445: a(n) = A093445(2*n+1,n+1). - Reinhard Zumkeller, Oct 03 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005945, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. - Bruno Berselli, Apr 25 2010

Programs

Formula

a(n) = (1/2) * (3*n^3 + 7*n^2 + 6*n + 2). - Ralf Stephan, Apr 20 2004
a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012
E.g.f.: exp(x)*(2 + 16*x + 16*x^2 + 3*x^3)/2. - Stefano Spezia, Jun 10 2022

Extensions

More terms from Emeric Deutsch, May 09 2004
Showing 1-8 of 8 results.