cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A144150 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where the e.g.f. of column k is 1+g^(k+1)(x) with g = x-> exp(x)-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 60, 52, 1, 1, 1, 6, 35, 154, 358, 203, 1, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 1, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 1, 1, 10, 117
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2008

Keywords

Comments

A(n,k) is also the number of (k+1)-level labeled rooted trees with n leaves.
Number of ways to start with set {1,2,...,n} and then repeat k times: partition each set into subsets. - Alois P. Heinz, Aug 14 2015
Equivalently, A(n,k) is the number of length k+1 multichains from bottom to top in the set partition lattice of an n-set. - Geoffrey Critzer, Dec 05 2020

Examples

			Square array begins:
  1,  1,   1,    1,    1,    1,  ...
  1,  1,   1,    1,    1,    1,  ...
  1,  2,   3,    4,    5,    6,  ...
  1,  5,  12,   22,   35,   51,  ...
  1, 15,  60,  154,  315,  561,  ...
  1, 52, 358, 1304, 3455, 7556,  ...
		

Crossrefs

Rows n=0+1, 2-5 give: A000012, A000027, A000326, A005945, A005946.
First lower diagonal gives A139383.
First upper diagonal gives A346802.
Main diagonal gives A261280.

Programs

  • Maple
    g:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1
          else (n-1)! *add(p(k)*b(n-k)/(k-1)!/(n-k)!, k=1..n) fi
        end end:
    A:= (n,k)-> (g@@k)(1)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 14 2015
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0,
          b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    A:= (n, k)-> b(n, k, 0):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x - 1], x, k]; a[n_, k_] := SeriesCoefficient[1 + g[k + 1], {x, 0, n}]*n!; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum([binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1)])
    for n in range(51): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 07 2017

Formula

E.g.f. of column k: 1 + g^(k+1)(x) with g = x-> exp(x)-1.
Column k+1 is Stirling transform of column k.

A125860 Rectangular table where column k equals row sums of matrix power A097712^k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 12, 4, 1, 1, 86, 69, 22, 5, 1, 1, 698, 612, 178, 35, 6, 1, 1, 9551, 8853, 2251, 365, 51, 7, 1, 1, 226592, 217041, 46663, 5990, 651, 70, 8, 1, 1, 9471845, 9245253, 1640572, 161525, 13131, 1057, 92, 9, 1, 1, 705154187
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Triangle A097712 satisfies: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1) for n > 0, k > 0, with A097712(n,0)=A097712(n,n)=1 for n >= 0. Column 1 equals A016121, which counts the sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.
T(2, n) = (n+1)*A005408(n) - Sum_{i=0..n} A001477(i) = (n+1)*(2*n+1) - A000217(n) = (n+1)*(3*n+2)/2; T(3, n) = (n+1)*A001106(n+1) - Sum_{i=0..n} A001477(i) = (n+1)*((n+1)*(7*n+2)/2) - A000217(n) = (n+1)*(7*n^2 + 8*n + 2)/2. - Bruno Berselli, Apr 25 2010

Examples

			Recurrence is illustrated by:
  T(4,1) = T(3,1) + T(3,2) = 17 + 69 = 86;
  T(4,2) = T(3,2) + T(3,3) + T(3,4) = 69 + 178 + 365 = 612;
  T(4,3) = T(3,3) + T(3,4) + T(3,5) + T(3,6) = 178 + 365 + 651 + 1057 = 2251.
Rows of this table begin:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,...;
  1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, ...;
  1, 17, 69, 178, 365, 651, 1057, 1604, 2313, 3205, 4301, 5622, 7189,..;
  1, 86, 612, 2251, 5990, 13131, 25291, 44402, 72711, 112780, 167486,..;
  1, 698, 8853, 46663, 161525, 435801, 996583, 2025458, 3768273, ...;
  1, 9551, 217041, 1640572, 7387640, 24530016, 66593821, 156664796, ...;
  1, 226592, 9245253, 100152049, 586285040, 2394413286, 7713533212, ...;
  1, 9471845, 695682342, 10794383587, 82090572095, 412135908606, ...;
  1, 705154187, 93580638024, 2079805452133, 20540291522675, ...;
  1, 94285792211, 22713677612832, 723492192295786, 9278896006526795,...;
  1, 22807963405043, 10025101876435413, 458149292979837523, ...;
  ...
where column k equals the row sums of matrix power A097712^k for k >= 0.
Triangle A097712 begins:
  1;
  1,      1;
  1,      3,       1;
  1,      8,       7,       1;
  1,     25,      44,      15,       1;
  1,    111,     346,     208,      31,      1;
  1,    809,    4045,    3720,     912,     63,     1;
  1,  10360,   77351,   99776,   35136,   3840,   127,   1;
  1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255; ...
where A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1);
e.g., A097712(5,2) = A097712(4,2) + [A097712^2](4,1) = 44 + 302 = 346.
Matrix square A097712^2 begins:
     1;
     2,     1;
     5,     6,     1;
    17,    37,    14,     1;
    86,   302,   193,    30,    1;
   698,  3699,  3512,   881,   62,   1;
  9551, 73306, 96056, 34224, 3777, 126, 1; ...
Matrix cube A097712^3 begins:
       1;
       3,      1;
      12,      9,      1;
      69,     87,     21,      1;
     612,   1146,    447,     45,    1;
    8853,  22944,  12753,   2019,   93,   1;
  217041, 744486, 549453, 120807, 8595, 189, 1; ...
		

Crossrefs

Cf. A097712; columns: A016121, A125862, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums). Variants: A125790, A125800.
Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) and similar: A081436, A005920, A005945, A006003. - Bruno Berselli, Apr 25 2010

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[Or[n == 0, k == 0], 1, Sum[T[n - 1, j + k], {j, 0, k}]];
    Table[T[#, k] &[n - k + 1], {n, 0, 9}, {k, 0, n + 1}] (* Michael De Vlieger, Dec 10 2024, after PARI *)
  • PARI
    T(n,k)=if(n==0 || k==0,1,sum(j=0,k,T(n-1,j+k)))

Formula

T(n,k) = Sum_{j=0..k} T(n-1, j+k) for n > 0, with T(0,n)=T(n,0)=1 for n >= 0.

A005920 Tricapped prism numbers.

Original entry on oeis.org

1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
Offset: 0

Views

Author

Keywords

Comments

a(n) = (n+1)*A000326(n+1) - Sum_{i=0...n} A001477(i) = (n+1)*((n+1)*(3*n+2)/2) - A000217(n) = (n+1)*(3*n^2+4n+2)/2. - Bruno Berselli, Apr 25 2010
Also central terms of triangle A093445: a(n) = A093445(2*n+1,n+1). - Reinhard Zumkeller, Oct 03 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005945, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. - Bruno Berselli, Apr 25 2010

Programs

Formula

a(n) = (1/2) * (3*n^3 + 7*n^2 + 6*n + 2). - Ralf Stephan, Apr 20 2004
a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012
E.g.f.: exp(x)*(2 + 16*x + 16*x^2 + 3*x^3)/2. - Stefano Spezia, Jun 10 2022

Extensions

More terms from Emeric Deutsch, May 09 2004

A111672 Array T(n,k) = A153277(n-1,k) = A144150(n,k-1) read by downwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 12, 15, 1, 1, 5, 22, 60, 52, 1, 1, 6, 35, 154, 358, 203, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 14 2005

Keywords

Comments

Column k is obtained by taking the k-th matrix power of the triangle A008277 and multiplying from the right with the column vector [1,0,0,0,....].

Examples

			The array starts
1,  1,   1,    1,    1,    1,  ...
1,  2,   3,    4,    5,    6,  ...
1,  5,  12,   22,   35,   51,  ...
1, 15,  60,  154,  315,  561,  ...
1, 52, 358, 1304, 3455, 7556,  ...
		

Crossrefs

Cf. A000326 (row 3), A005945 (row 4), A000110 (column 2), A000258 (column 3), A000307 (column 4), A000357 (column 5), A000405 (column 6), A111669 (column 7), A081624.

Extensions

a(44) and definition corrected by Georg Fischer, May 18 2022

A153277 Array read by antidiagonals of higher order Bell numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 12, 15, 1, 5, 22, 60, 52, 1, 6, 35, 154, 358, 203, 1, 7, 51, 315, 1304, 2471, 877, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 10, 117, 1380, 14532, 120196, 660665, 1855570, 1606137, 115975
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2008

Keywords

Comments

Mezo's abstract: The powers of matrices with Stirling number-coefficients are investigated. It is revealed that the elements of these matrices have a number of properties of the ordinary Stirling numbers. Moreover, "higher order" Bell, Fubini and Eulerian numbers can be defined. Hence we give a new interpretation for E. T. Bell's iterated exponential integers. In addition, it is worth to note that these numbers appear in combinatorial physics, in the problem of the normal ordering of quantum field theoretical operators.

Examples

			The table on p.4 of Mezo begins:
===========================================================
B_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment
===========================================================
p=1..|.1.|.2.|..5.|..15.|...52.|....203.|.....877.|.A000110
p=2..|.1.|.3.|.12.|..60.|..358.|...2471.|...19302.|.A000258
p=3..|.1.|.4.|.22.|.154.|.1304.|..12915.|..146115.|.A000307
p=4..|.1.|.5.|.35.|.315.|.3455.|..44590.|..660665.|.A000357
p=5..|.1.|.6.|.51.|.561.|.7556.|.120196.|.2201856.|.A000405
===========================================================
		

Crossrefs

From Alois P. Heinz, Feb 02 2009: (Start)
Truncated and reflected version of A144150.

Programs

  • Maple
    g:= proc(a) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add (a(k)* b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: B:= (p,n)-> (g@@p)(1)(n):
    seq(seq(B(d-n, n), n=1..d-1), d=1..12); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x-1], x, k]; a[n_, k_] := SeriesCoefficient[ 1+g[k+1], {x, 0, n}]*n!; Table[a[n, k-n+1], {k, 1, 12}, {n, 1, k}] // Flatten (* Jean-François Alcover, Jan 28 2015 *)

Extensions

More terms from Alois P. Heinz, Feb 02 2009

A005946 Number of n-step mappings with 5 inputs.

Original entry on oeis.org

1, 52, 358, 1304, 3455, 7556, 14532, 25488, 41709, 64660, 95986, 137512, 191243, 259364, 344240, 448416, 574617, 725748, 904894, 1115320, 1360471, 1643972, 1969628, 2341424, 2763525, 3240276, 3776202, 4376008, 5044579, 5786980, 6608456, 7514432, 8510513, 9602484
Offset: 1

Views

Author

Keywords

Comments

Hogg & Huberman paper has a misprint a(4)=304. - Sean A. Irvine, Oct 11 2016

References

  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=5 of A144150.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n<2, 1, 0),
          add(Stirling2(n, j)*b(j, k-1), j=0..n))
        end:
    a:= n-> b(5, n):
    seq(a(n), n=1..36);  # Alois P. Heinz, Aug 23 2021
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 52, 358, 1304, 3455}, 36] (* Jean-François Alcover, May 20 2022 *)

Formula

a(n) = h(5,n) where h(n, m) = Sum_{j} (n!/f(j)) * Product_{k=1..n} h(k,m-1)^(j(k)) and the sum runs over all partitions j=(j(1),...,j(n)) of n and f(j) = Product_{k=1..n} j(k)! * (k!)^(j(k)). That is, j satisfies Sum_{k=1..n} k*j(k) = n [From Hogg & Huberman]. - Sean A. Irvine, Oct 11 2016
G.f.: x*(24*x^3+108*x^2+47*x+1)/(1-x)^5. - Alois P. Heinz, Aug 23 2021

Extensions

a(4) corrected and more terms from Sean A. Irvine, Oct 11 2016

A005947 Tumbling distance for n-input mappings with 2 steps.

Original entry on oeis.org

0, 3, 16, 75, 356, 1770, 9306, 51821, 305232, 1897227, 12411650, 85234864, 612903324, 4604004691, 36050248752, 293659886235, 2483993559376, 21781908622738, 197701336871190, 1854695911048053, 17960309481562600, 179309794875495795
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

Title improved and more terms from Sean A. Irvine, Jun 15 2018

A005948 Tumbling distance for n-input mappings with 3 steps.

Original entry on oeis.org

0, 6, 52, 411, 3392, 30070, 287802, 2969267, 32902560, 389989449, 4924511300, 65995764461, 935412316380, 13978234748257, 219593721606826, 3617245945896600, 62330776215811680, 1121143456571006754, 21008889235589947362
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

Title improved and more terms from Sean A. Irvine, Jun 15 2018

A005949 Tumbling distance for n-input mappings with 4 steps.

Original entry on oeis.org

0, 10, 120, 1335, 15708, 200610, 2790510, 42159117, 688622328, 12101137137, 227715010610, 4568825493485, 97357110723876, 2195590326037459, 52236953438239276, 1307388516417151770, 34332703353547941888, 943774667840796564132
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

Title improved and more terms from Sean A. Irvine, Jun 15 2018
Showing 1-9 of 9 results.