cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A125860 Rectangular table where column k equals row sums of matrix power A097712^k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 12, 4, 1, 1, 86, 69, 22, 5, 1, 1, 698, 612, 178, 35, 6, 1, 1, 9551, 8853, 2251, 365, 51, 7, 1, 1, 226592, 217041, 46663, 5990, 651, 70, 8, 1, 1, 9471845, 9245253, 1640572, 161525, 13131, 1057, 92, 9, 1, 1, 705154187
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Triangle A097712 satisfies: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1) for n > 0, k > 0, with A097712(n,0)=A097712(n,n)=1 for n >= 0. Column 1 equals A016121, which counts the sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.
T(2, n) = (n+1)*A005408(n) - Sum_{i=0..n} A001477(i) = (n+1)*(2*n+1) - A000217(n) = (n+1)*(3*n+2)/2; T(3, n) = (n+1)*A001106(n+1) - Sum_{i=0..n} A001477(i) = (n+1)*((n+1)*(7*n+2)/2) - A000217(n) = (n+1)*(7*n^2 + 8*n + 2)/2. - Bruno Berselli, Apr 25 2010

Examples

			Recurrence is illustrated by:
  T(4,1) = T(3,1) + T(3,2) = 17 + 69 = 86;
  T(4,2) = T(3,2) + T(3,3) + T(3,4) = 69 + 178 + 365 = 612;
  T(4,3) = T(3,3) + T(3,4) + T(3,5) + T(3,6) = 178 + 365 + 651 + 1057 = 2251.
Rows of this table begin:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,...;
  1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, ...;
  1, 17, 69, 178, 365, 651, 1057, 1604, 2313, 3205, 4301, 5622, 7189,..;
  1, 86, 612, 2251, 5990, 13131, 25291, 44402, 72711, 112780, 167486,..;
  1, 698, 8853, 46663, 161525, 435801, 996583, 2025458, 3768273, ...;
  1, 9551, 217041, 1640572, 7387640, 24530016, 66593821, 156664796, ...;
  1, 226592, 9245253, 100152049, 586285040, 2394413286, 7713533212, ...;
  1, 9471845, 695682342, 10794383587, 82090572095, 412135908606, ...;
  1, 705154187, 93580638024, 2079805452133, 20540291522675, ...;
  1, 94285792211, 22713677612832, 723492192295786, 9278896006526795,...;
  1, 22807963405043, 10025101876435413, 458149292979837523, ...;
  ...
where column k equals the row sums of matrix power A097712^k for k >= 0.
Triangle A097712 begins:
  1;
  1,      1;
  1,      3,       1;
  1,      8,       7,       1;
  1,     25,      44,      15,       1;
  1,    111,     346,     208,      31,      1;
  1,    809,    4045,    3720,     912,     63,     1;
  1,  10360,   77351,   99776,   35136,   3840,   127,   1;
  1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255; ...
where A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1);
e.g., A097712(5,2) = A097712(4,2) + [A097712^2](4,1) = 44 + 302 = 346.
Matrix square A097712^2 begins:
     1;
     2,     1;
     5,     6,     1;
    17,    37,    14,     1;
    86,   302,   193,    30,    1;
   698,  3699,  3512,   881,   62,   1;
  9551, 73306, 96056, 34224, 3777, 126, 1; ...
Matrix cube A097712^3 begins:
       1;
       3,      1;
      12,      9,      1;
      69,     87,     21,      1;
     612,   1146,    447,     45,    1;
    8853,  22944,  12753,   2019,   93,   1;
  217041, 744486, 549453, 120807, 8595, 189, 1; ...
		

Crossrefs

Cf. A097712; columns: A016121, A125862, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums). Variants: A125790, A125800.
Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) and similar: A081436, A005920, A005945, A006003. - Bruno Berselli, Apr 25 2010

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[Or[n == 0, k == 0], 1, Sum[T[n - 1, j + k], {j, 0, k}]];
    Table[T[#, k] &[n - k + 1], {n, 0, 9}, {k, 0, n + 1}] (* Michael De Vlieger, Dec 10 2024, after PARI *)
  • PARI
    T(n,k)=if(n==0 || k==0,1,sum(j=0,k,T(n-1,j+k)))

Formula

T(n,k) = Sum_{j=0..k} T(n-1, j+k) for n > 0, with T(0,n)=T(n,0)=1 for n >= 0.

A125862 Column 2 of table A125860; also equals row sums of matrix power A097712^2.

Original entry on oeis.org

1, 3, 12, 69, 612, 8853, 217041, 9245253, 695682342, 93580638024, 22713677612832, 10025101876435413, 8100572528598910191, 12054728928174188426943, 33214476295395054879355617, 170255688895444623691322464599
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^3, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125863 Column 3 of table A125860; also equals row sums of matrix power A097712^3.

Original entry on oeis.org

1, 4, 22, 178, 2251, 46663, 1640572, 100152049, 10794383587, 2079805452133, 723492192295786, 458149292979837523, 531871667833026397222, 1138955362720160687114704, 4523369812874327770490887837
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^4, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125864 Column 4 of table A125860; also equals row sums of matrix power A097712^4.

Original entry on oeis.org

1, 5, 35, 365, 5990, 161525, 7387640, 586285040, 82090572095, 20540291522675, 9278896006526795, 7632398133742637255, 11514756687812563119530, 32063466203746720003813970, 165699104606274900865952221145
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^5, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125863, A125865; A125861 (diagonal), A125859 (antidiagonal sums).

A125865 Column 5 of table A125860; also equals row sums of matrix power A097712^5.

Original entry on oeis.org

1, 6, 51, 651, 13131, 435801, 24530016, 2394413286, 412135908606, 126722253316281, 70336222713070656, 71088278975389204986, 131802456226253519662956, 451158681817567800972000111
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Comments

Equals column 0 of matrix power A097712^6, where triangle A097712 satisfies recurrence: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1).

Crossrefs

Cf. A125860; A097712; other columns: A016121, A125862, A125863, A125864; A125861 (diagonal), A125859 (antidiagonal sums).

A097713 Column 1 of triangle A097712.

Original entry on oeis.org

1, 3, 8, 25, 111, 809, 10360, 236952, 9708797, 714862984, 95000655195, 22902964060238, 10070812803900694, 8120691251242651341, 12070960239863869828931, 33238610095183531376362138
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2004

Keywords

Comments

Partial sums of A016121.
The row sums of triangle A097712 give A016121.

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] + Sum[T[n-1,j]*T[j,k-1], {j,0,n-1}] ]]; (* T=A097712 *)
    A097713[n_]:= T[n,1];
    Table[A097713[n], {n,30}] (* G. C. Greubel, Feb 22 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A097712
        if k<0 or k>n: return 0
        elif k==0 or k==n: return 1
        else: return T(n-1, k) + sum(T(n-1, j)*T(j, k-1) for j in range(n))
    def A097713(n): return T(n,1)
    [A097713(n) for n in range(1,31)] # G. C. Greubel, Feb 22 2024

Formula

a(n) = Sum_{k=0..n} A016121(k).

A016121 Number of sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.

Original entry on oeis.org

1, 2, 5, 17, 86, 698, 9551, 226592, 9471845, 705154187, 94285792211, 22807963405043, 10047909839840456, 8110620438438750647, 12062839548612627177590, 33226539134943667506533207, 170288915434579567358828997806, 1630770670148598007261992936663653
Offset: 0

Views

Author

Keywords

Comments

Number of n X n binary symmetric matrices with rows, considered as binary numbers, in nondecreasing order. - R. H. Hardin, May 30 2008
Also, number of (n+1) X (n+1) binary symmetric matrices with zero main diagonal and rows, considered as binary numbers, in nondecreasing order. - Max Alekseyev, Feb 06 2022

Crossrefs

Row sums of triangle A097712.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k > n, 0, If[n == k, 1, If[k == 0, 1, T[n - 1, k] + Sum[T[n - 1, j] T[j, k - 1], {j, 0, n - 1}]]]];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 02 2019 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A097712
        if k<0 or k>n: return 0
        elif k==0 or k==n: return 1
        else: return T(n-1, k) + sum(T(n-1, j)*T(j, k-1) for j in range(n))
    def A016121(n): return sum(T(n,k) for k in range(n+1))
    [A016121(n) for n in range(31)] # G. C. Greubel, Feb 21 2024

Formula

a(n) = Sum_{k=0..n} A097712(n, k). - Paul D. Hanna, Aug 24 2004
Equals the binomial transform of A008934 (number of tournament sequences): a(n) = Sum_{k=0..n} C(n, k)*A008934(k). - Paul D. Hanna, Sep 18 2005

A097710 Lower triangular matrix T, read by rows, such that row (n) is formed from the sums of adjacent terms in row (n-1) of the matrix square T^2, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 7, 13, 7, 1, 41, 88, 61, 15, 1, 397, 951, 781, 257, 31, 1, 6377, 16691, 15566, 6231, 1041, 63, 1, 171886, 484490, 500057, 231721, 48303, 4161, 127, 1, 7892642, 23701698, 26604323, 13843968, 3406505, 374127, 16577, 255, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 22 2004

Keywords

Comments

Column 0 is equal to sequence A008934, which is the number of tournament sequences.
This triangle has the same row sums and first column terms as in rows 2^n, for n>=0, of triangle A093654.

Examples

			Rows of this triangle T begin:
       1;
       1,      1;
       2,      3,      1;
       7,     13,      7,      1;
      41,     88,     61,     15,     1;
     397,    951,    781,    257,    31,    1;
    6377,  16691,  15566,   6231,  1041,   63,   1;
  171886, 484490, 500057, 231721, 48303, 4161, 127, 1;
Rows of T^2 begin:
        1;
        2,        1;
        7,        6,        1;
       41,       47,       14,       1;
      397,      554,      227,      30,      1;
     6377,    10314,     5252,     979,     62,     1;
   171886,   312604,   187453,   44268,   4035,   126,   1;
  7892642, 15809056, 10795267, 3048701, 357804, 16323, 254, 1;
The sums of adjacent terms in row (n) of T^2 forms row (n+1) of T:
  T(5,0) = T^2(4,0) = 397;
  T(5,1) = T^2(4,0) + T^2(4,1) = 397 + 554 = 951;
  T(5,2) = T^2(4,1) + T^2(4,2) = 554 + 227 = 781.
Rows of matrix inverse T^(-1) begins:
   1;
  -1,     1;
   1,    -3,      1;
  -1,     8,     -7,     1;
   1,   -25,     44,   -15,      1;
  -1,   111,   -346,   208,    -31,    1;
   1,  -809,   4045, -3720,    912,  -63,    1;
  -1, 10360, -77351, 99776, -35136, 3840, -127, 1; ...
which is a signed version of A097712.
		

Crossrefs

Cf. A008934 (column k=0), A093657 (row sums), A097711 (column k=1).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k>n, 0, n == k, 1, k == 0, Sum[T[n-1, j]*T[j, 0], {j, 0, n-1}], True, Sum[T[n-1, j]*T[j, k-1], {j, 0, n-1}] + Sum[T[n-1, j]*T[j, k], {j, 0, n-1}]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 23 2016, adapted from PARI *)
  • PARI
    /* Using Recurrence relation: */
    {T(n,k) = if(n<0||k>n, 0, if(n==k,1, if(k==0, sum(j=0,n-1, T(n-1,j)*T(j,0)),  sum(j=0,n-1, T(n-1,j)*T(j,k-1)) + sum(j=0,n-1, T(n-1,j)*T(j,k));)))}
    for(n=0,8, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Faster: using Matrix generating method: */
    {T(n,k) = my(M=matrix(2,2,r,c,if(r>=c,1))); for(i=1,n,
    N=matrix(#M+1,#M+1,r,c, if(r>=c, if(r<=#M,M[r,c], if(c>1,(M^2)[r-1,c-1]) + if(c<=#M,(M^2)[r-1,c])) ));
    M=N;); M[n+1,k+1]}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Nov 27 2016
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A097710
        if n< 0 or k<0 or k>n: return 0
        elif k==n: return 1
        elif k==0: return sum(T(n-1,j)*T(j,0) for j in range(n))
        else: return sum(T(n-1, j)*(T(j, k-1)+T(j,k)) for j in range(n))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 21 2024

Formula

T(n, k) = T^2(n-1, k-1) + T^2(n-1, k) for n>=1 and k>1, with T(n, 1) = T^2(n-1, 1) and T(n,n) = 1 for n>=0, where T^2 is the matrix square of this triangle T.
T(n, k) = Sum_{j=0..n-1} T(n-1, j)*(T(j, k-1) + T(j,k)), with T(n, 0) = Sum_{j=0..n-1} T(n-1,j)*T(j,0), and T(n, n) = 1.
T(n, 0) = A008934(n).
T(n, 1) = A097711(n).
Sum_{k=0..n} T(n, k) = A093657(n+1) (row sums).
From G. C. Greubel, Feb 21 2024: (Start)
T(n, n-1) = A000225(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

A125861 Main diagonal of table A125860.

Original entry on oeis.org

1, 2, 12, 178, 5990, 435801, 66593821, 20997402098, 13512727916532, 17629371074833300, 46432767742317108086, 246240366959004185679198, 2624854986865673643625591411, 56179604057909797695704800461149
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2006

Keywords

Crossrefs

Cf. A125860; A097712; columns: A016121, A125862, A125863, A125864, A125865; A125859 (antidiagonal sums).
Showing 1-9 of 9 results.