cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048291 Number of {0,1} n X n matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Number of relations on n labeled points such that for every point x there exists y and z such that xRy and zRx.
Also the number of edge covers in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Counts labeled digraphs (loops allowed, no multiarcs) on n nodes where each indegree and each outdegree is >= 1. The corresponding sequence for unlabeled digraphs (1, 5, 55, 1918,... for n >= 1) seems not to be in the OEIS. - R. J. Mathar, Nov 21 2023
These relations form a subsemigroup of the semigroup of all binary relations on [n]. The zero element is the universal relation (all 1's matrix). See Schwarz link. - Geoffrey Critzer, Jan 15 2024

Examples

			a(2) = 7:  |01|  |01|  |10|  |10|  |11|  |11|  |11|
           |10|  |11|  |01|  |11|  |01|  |10|  |11|.
		

References

  • Brendan McKay, Posting to sci.math.research, Jun 14 1999.

Crossrefs

Cf. A055601, A055599, A104601, A086193 (traceless, no loops), A086206, A322661 (adj. matr. undirected edges).
Diagonal of A183109.

Programs

  • Maple
    seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
    
  • Python
    import math
    f = math.factorial
    def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017

Formula

a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
From Vladeta Jovovic, Feb 23 2008: (Start)
E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2014
a(n) = Sum_{s=0..n-1} binomial(n,s)*(-1)^s*A092477(n,n-s), n > 0. - R. J. Mathar, Nov 18 2023

A287065 Number of dominating sets on the n X n rook graph.

Original entry on oeis.org

1, 11, 421, 59747, 32260381, 67680006971, 559876911043381, 18412604442711949187, 2416403019417984915336061, 1267413006543912045144741284411, 2658304092145691708492995820522716981, 22300364428188338185156192161829091442585827
Offset: 1

Views

Author

Eric W. Weisstein, May 19 2017

Keywords

Comments

Number of {0,1} n X n matrices with no zero rows or no zero columns. - Geoffrey Critzer, Jan 15 2024

Crossrefs

Main diagonal of A287274.
Row sums of A368831.

Programs

  • Mathematica
    Table[(2^n - 1)^n + Sum[Binomial[n, i] Sum[(-1)^j (-1 + 2^(n - j))^i Binomial[n, j], {j, 0, n}], {i, n - 1}], {n, 20}] (* Eric W. Weisstein, May 27 2017 *)
  • PARI
    b(m,n)=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
    a(n)=(2^n-1)^n + sum(i=1,n-1,b(n,i)*binomial(n,i)); \\ Andrew Howroyd, May 22 2017

Formula

a(n) = (2^n-1)^n + Sum_{i=1..n-1} binomial(n,i) * A183109(n,i). - Andrew Howroyd, May 22 2017

Extensions

a(6)-a(12) from Andrew Howroyd, May 22 2017

A173505 Triangle T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n,q) = Product_{j=1..n} (q^j -1)^(n-j) and q = 4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 45, 45, 1, 1, 2835, 42525, 2835, 1, 1, 722925, 683164125, 683164125, 722925, 1, 1, 739552275, 178213609468125, 11227457396491875, 178213609468125, 739552275, 1, 1, 3028466566125, 746569779579727228125, 11993643508948317919828125, 11993643508948317919828125, 746569779579727228125, 3028466566125, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 20 2010

Keywords

Examples

			The triangle begins as:
  1;
  1,         1;
  1,         3,               1;
  1,        45,              45,                 1;
  1,      2835,           42525,              2835,               1;
  1,    722925,       683164125,         683164125,          722925,         1;
  1, 739552275, 178213609468125, 11227457396491875, 178213609468125, 739552275, 1;
		

Crossrefs

Programs

  • Mathematica
    c[n_, q_]:= Product[(q^m-1)^(n-m), {m,1,n}];
    T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
    Table[T[n, k, 4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 25 2021 *)
  • Sage
    @CachedFunction
    def c(n,q): return product( (q^j -1)^(n-j) for j in (1..n))
    def T(n,k,q): return c(n,q)/(c(k,q)*c(n-k,q))
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Apr 25 2021

Formula

q=4;c(n,q)=Product[(q^m - 1)^(n - m), {m, 1, n}];
t(n,k,q)=c(n, q)/(c(k, q)*c(n - k, q))

Extensions

Edited by G. C. Greubel, Apr 25 2021

A217436 Triangular array read by rows. T(n,k) is the number of labeled relations on n elements with exactly k vertices of indegree and outdegree = 0.

Original entry on oeis.org

1, 1, 1, 13, 2, 1, 469, 39, 3, 1, 63577, 1876, 78, 4, 1, 33231721, 317885, 4690, 130, 5, 1, 68519123173, 199390326, 953655, 9380, 195, 6, 1, 562469619451069, 479633862211, 697866141, 2225195, 16415, 273, 7, 1, 18442242396353040817, 4499756955608552, 1918535448844, 1860976376, 4450390, 26264, 364, 8, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 02 2012

Keywords

Comments

Row sums = 2^(n^2). First column (k = 0) is A173403.
Sum_{k=1,2,...,n} T(n,k)*k = A197927.

Examples

			1,
1, 1,
13, 2, 1,
469, 39, 3, 1,
63577, 1876, 78, 4, 1,
33231721, 317885, 4690, 130, 5, 1,
68519123173, 199390326, 953655, 9380, 195, 6, 1
		

Programs

  • Mathematica
    nn=6; s=Sum[Sum[(-1)^k Binomial[n,k] 2^(n-k)^2, {k,0,n}] x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[Exp[ y x] s, {x,0,nn}], {x,y}] //Grid

Formula

E.g.f.: exp(y*x)*A(x) where A(x) is the e.g.f. for A173403.
Showing 1-4 of 4 results.