A173503 Triangle T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n,q) = Product_{j=1..n} (q^j -1)^(n-j) and q = 2, read by rows.
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 21, 63, 21, 1, 1, 315, 6615, 6615, 315, 1, 1, 9765, 3075975, 21531825, 3075975, 9765, 1, 1, 615195, 6007379175, 630774813375, 630774813375, 6007379175, 615195, 1, 1, 78129765, 48065040779175, 156451707736214625, 2346775616043219375, 156451707736214625, 48065040779175, 78129765, 1
Offset: 0
Examples
The triangle begins as: 1; 1, 1; 1, 1, 1; 1, 3, 3, 1; 1, 21, 63, 21, 1; 1, 315, 6615, 6615, 315, 1; 1, 9765, 3075975, 21531825, 3075975, 9765, 1; 1, 615195, 6007379175, 630774813375, 630774813375, 6007379175, 615195, 1;
Links
- G. C. Greubel, Rows n = 0..29 of the triangle, flattened
Programs
-
Mathematica
c[n_, q_]:= Product[(q^m-1)^(n-m), {m,1,n}]; T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]); Table[T[n, k, 2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 25 2021 *)
-
Sage
@CachedFunction def c(n,q): return product( (q^j -1)^(n-j) for j in (1..n)) def T(n,k,q): return c(n,q)/(c(k,q)*c(n-k,q)) flatten([[T(n,k,2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Apr 25 2021
Formula
T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n,q) = Product_{j=1..n} (q^j -1)^(n-j) and q = 2.
Extensions
Edited by G. C. Greubel, Apr 25 2021