A322661
Number of graphs with loops spanning n labeled vertices.
Original entry on oeis.org
1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
Offset: 0
The a(2) = 5 edge-sets:
{{1,2}}
{{1,1},{1,2}}
{{1,1},{2,2}}
{{1,2},{2,2}}
{{1,1},{1,2},{2,2}}
-
Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^Binomial[k+1,2],{k,0,n}],{n,10}]
(* second program *)
Table[Select[Expand[Product[1+x[i]*x[j],{j,n},{i,j}]],And@@Table[!FreeQ[#,x[i]],{i,n}]&]/.x[_]->1,{n,7}]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*2^binomial(k+1,2)) \\ Andrew Howroyd, Jan 06 2024
A335608
Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 2) missing one edge.
Original entry on oeis.org
8, 104, 896, 6800, 49208, 349304, 2459696, 17261600, 120962408, 847130504, 5931094496, 41521204400, 290659059608, 2034645303704, 14242612785296, 99698576475200, 697890896260808, 4885238856628904, 34196679744812096, 239376781458914000, 1675637539948086008
Offset: 2
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800. Polygonal chain sequences
A152927,
A152928,
A152929,
A152930,
A152931,
A152932,
A152933,
A152934,
A152939. Number of {0,1} n X n matrices with no zero rows or columns
A048291.
A335613
Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the four point part.
Original entry on oeis.org
290, 7568, 140114, 2300576, 35939330, 549221168, 8309585714, 125143712576, 1880658325730, 28234402793168, 423687765591314, 6356518634756576, 95356194832648130, 1430401830434093168, 21456439814417820914, 321849483728499752576, 4827762461533785786530
Offset: 3
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800. Polygonal chain sequences
A152927,
A152928,
A152929,
A152930,
A152931,
A152932,
A152933,
A152934,
A152939. Number of {0,1} n X n matrices with no zero rows or columns
A048291.
-
a:= proc(n) 49*15^(n-2)-76*7^(n-2)+10*3^(n-1)-3 end proc: seq(a(n), n=3..20);
-
Vec(2*x^3*(145 + 14*x + 93*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^22)) \\ Colin Barker, Jul 17 2020
A337416
Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 3) missing two edges, where the removed edges are incident to the same point in the 5 point part.
Original entry on oeis.org
2240, 133232, 5366288, 187074656, 6126049760, 194922245072, 6118612137008, 190822947290816, 5932740419114240, 184173665371614512, 5713266248795701328, 177169506604462719776, 5493128593023515417120, 170300095372377973419152, 5279499596024093537691248
Offset: 3
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (57,-1002,6562,-15381,9765).
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800. Polygonal chain sequences
A152927,
A152928,
A152929,
A152930,
A152931,
A152932,
A152933,
A152934,
A152939. Number of {0,1} n X n matrices with no zero rows or columns
A048291.
A337418
Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the removed edges are not incident to the same vertex in the 3 point part but are incident to the same vertex in the other part.
Original entry on oeis.org
32, 290, 2240, 16322, 116192, 819170, 5751680, 40314242, 282357152, 1976972450, 13840224320, 96885821762, 678213506912, 4747532812130, 33232844476160, 232630255706882, 1628412823069472, 11398892860850210, 79792259324043200, 558545843162577602
Offset: 3
- Paolo Xausa, Table of n, a(n) for n = 3..1000
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (11,-31,21).
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800. Polygonal chain sequences
A152927,
A152928,
A152929,
A152930,
A152931,
A152932,
A152933,
A152934,
A152939. Number of {0,1} n X n matrices with no zero rows or columns
A048291.
-
a:= proc(n) 7^(n-1)-2*3^(n-1)+1 end proc: seq(a(n), n=3..20);
-
A337418[n_] := 7^(n-1) - 2*3^(n-1) + 1;
Array[A337418,25,3] (* Paolo Xausa, Jul 22 2024 *)
-
Vec(2*x^3*(16 - 31*x + 21*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)) + O(x^25)) \\ Colin Barker, Nov 20 2020
A340173
Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 4-point set but are incident to the same vertex in the other set.
Original entry on oeis.org
344, 7568, 133232, 2145368, 33235784, 506005088, 7642599392, 115007387048, 1727691783224, 25933450204208, 389128287094352, 5837810104155128, 87573352325069864, 1313643690750940928, 19704959203995442112, 295576514963872161608
Offset: 3
- Paolo Xausa, Table of n, a(n) for n = 3..800
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800.
Number of {0,1} n X n matrices with no zero rows or columns
A048291.
A340175
Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 6-point set but are incident to the same vertex in the other set.
Original entry on oeis.org
20720, 2300576, 187074656, 13292505200, 887383104080, 57504128509376, 3673096729270976, 232977132982939280, 14726467240259960240, 929286203862118743776, 58592152032205560862496, 3692766925932013206557360, 232689626985868508845398800
Offset: 3
- Paolo Xausa, Table of n, a(n) for n = 3..500
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (120,-4593,69688,-428787,978768,-615195).
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800.
Number of {0,1} n X n matrices with no zero rows or columns
A048291.
-
A340175[n_] := 15*63^(n-1) - 58*31^(n-1) + 89*15^(n-1) - 68*7^(n-1) + 26*3^(n-1) - 4; Array[A340175, 20, 3] (* or *)
LinearRecurrence[{120, -4593, 69688, -428787, 978768, -615195}, {20720, 2300576, 187074656, 13292505200, 887383104080, 57504128509376}, 20] (* Paolo Xausa, Jul 22 2024 *)
A340199
Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 3-point set and are also not incident to the same vertex in the other set.
Original entry on oeis.org
43, 379, 2899, 21043, 149563, 1053739, 7396579, 51837283, 363044683, 2541863899, 17794700659, 124567864723, 871989933403, 6103974174859, 42727953147139, 299096073799363, 2093673721903723, 14655719669250619, 102590048532528019
Offset: 3
Other sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418. Polygonal chain sequences
A152927,
A152928,
A152929,
A152930,
A152931,
A152932,
A152933,
A152934,
A152939. Number of {0,1} n X n matrices with no zero rows or columns
A048291.
-
LinearRecurrence[{11,-31,21},{43,379,2899},20] (* Harvey P. Dale, Apr 10 2024 *)
A340201
Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 5-point set and are also not incident to the same vertex in the other set.
Original entry on oeis.org
2899, 145387, 5566147, 190200379, 6173845939, 195645606667, 6129507633187, 190986695659099, 5935198857377299, 184210557438511147, 5713819738261143427, 177177809705712311419, 5493253144857237049459, 170301963687088948318027, 5279527621005195132400867
Offset: 3
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (57,-1002,6562,-15381,9765).
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800.
Number of {0,1} n X n matrices with no zero rows or columns
A048291.
A340403
Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 4) missing three edges, where the removed edges are incident to different vertices in the 4-point set and none of the removed edges are incident to the same vertex in the other set.
Original entry on oeis.org
3740, 66914, 1084508, 16848674, 256844060, 3881598434, 58426959068, 877826523554, 13177356595100, 197730071456354, 2966439163566428, 44500004197580834, 667523980478413340, 10013027130697435874, 150196578927865178588, 2252956887698068132514
Offset: 4
Sequences of segments from removing edges from bipartite graphs
A335608-
A335613,
A337416-
A337418,
A340173-
A340175,
A340199-
A340201,
A340897-
A340899,
A342580,
A342796,
A342850,
A340403-
A340405,
A340433-
A340438,
A341551-
A341553,
A342327-
A342328,
A343372-
A343374,
A343800. Polygonal chain sequences
A152927,
A152928,
A152929,
A152930,
A152931,
A152932,
A152933,
A152934,
A152939. Number of {0,1} n X n matrices with no zero rows or columns
A048291.
-
LinearRecurrence[{26,-196,486,-315},{3740,66914,1084508,16848674},20] (* Harvey P. Dale, Sep 18 2021 *)
Showing 1-10 of 70 results.
Comments