A335613 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the four point part.
290, 7568, 140114, 2300576, 35939330, 549221168, 8309585714, 125143712576, 1880658325730, 28234402793168, 423687765591314, 6356518634756576, 95356194832648130, 1430401830434093168, 21456439814417820914, 321849483728499752576, 4827762461533785786530
Offset: 3
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Maple
a:= proc(n) 49*15^(n-2)-76*7^(n-2)+10*3^(n-1)-3 end proc: seq(a(n), n=3..20);
-
PARI
Vec(2*x^3*(145 + 14*x + 93*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^22)) \\ Colin Barker, Jul 17 2020
Formula
a(n) = 49*15^(n-2) - 76*7^(n-2) + 10*3^(n-1) - 3.
From Colin Barker, Jul 17 2020: (Start)
G.f.: 2*x^3*(145 + 14*x + 93*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n>6.
(End)
Comments