cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Roman I. Vasquez

Roman I. Vasquez's wiki page.

Roman I. Vasquez has authored 9 sequences.

A342580 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 4) missing three edges, where all three removed edges are incident to the same vertex in the 5-point set.

Original entry on oeis.org

43664, 2248976, 85045184, 2880236192, 93044373104, 2941433979056, 92045266123424, 2866350051682112, 89051296064477264, 2763508542463136336, 85712552167491668864, 2657746010652834993632, 82399980314514994098224, 2554547203590738451564016
Offset: 4

Author

Roman I. Vasquez, Mar 24 2021

Keywords

Comments

Start with a complete bipartite graph K(5,n) with vertex sets A and B where |A| = 5 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where all three removed edges are incident to the same point in A. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 5 X n matrices (with n at least 4) with three fixed zero entries all in the same row and no zero rows or columns.
Take a complete bipartite graph K(5,n) (with n at least 4) having parts A and B where |A| = 5. This sequence gives the number of edge covers of the graph obtained from this K(5,n) graph after removing three edges, where all three removed edges are incident same vertex in A.

Crossrefs

Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 3375*31^(n-3) - 4747*15^(n-3) - 166*3^(n-3) + 1534*7^(n-3) + 4.

A342796 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 4) missing three edges, where all three removed edges are incident to the same vertex in the 6-point set.

Original entry on oeis.org

709682, 77784248, 6126191066, 427218509360, 28245026082242, 1821452259070568, 116065734824421866, 7353059854962677600, 464513906582191544402, 29303821259651224580888, 1847364138146506201033466, 116421875056692663153073040
Offset: 4

Author

Roman I. Vasquez, Mar 24 2021

Keywords

Comments

Start with a complete bipartite graph K(6,n) with vertex sets A and B where |A| = 6 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where all three removed edges are incident to the same point in A. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 6 X n matrices (with n at least 4) with three fixed zero entries all in the same row and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 4) having parts A and B where |A| = 6. This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing three edges, where all three removed edges are incident same vertex in A.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 29791*63^(n-3) - 46666*31^(n-3) + 20305*15^(n-3) - 3700*7^(n-3) + 275*3^(n-3) - 5.

A342850 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 4) missing three edges, where all three removed edges are incident to different vertices in the 3-point set and none of the removed edges are incident to the same vertex in the other set.

Original entry on oeis.org

162, 1242, 9018, 64098, 451602, 3169962, 22215978, 155590578, 1089370242, 7626300282, 53386227738, 373709971458, 2615988932082, 18311979920202, 128184031628298, 897288737958738, 6281022715393122, 43967163656797722, 307770159544721658
Offset: 4

Author

Roman I. Vasquez, Mar 24 2021

Keywords

Comments

Start with a complete bipartite graph K(3,n) with vertex sets A and B where |A| = 3 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where all three removed edges are incident to different points in A and none of the removed edges are incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 3 X n matrices (with n at least 4) with three fixed zero entries none of which are in the same row or column with no zero rows or columns.
Take a complete bipartite graph K(3,n) (with n at least 4) having parts A and B where |A| = 3. This sequence gives the number of edge covers of the graph obtained from this K(3,n) graph after removing three edges, where all three removed edges are incident to different vertices in A and none of the removed edges are incident to the same vertex in B.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 27*7^(n-3) - 3^(n-1).
G.f.: 54*x^4*(3 - 7*x)/(1 - 10*x + 21*x^2). - Stefano Spezia, Mar 25 2021

A340899 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 4) missing three edges, where all three removed edges are incident to the same vertex in the 4-point set.

Original entry on oeis.org

2426, 57152, 1014458, 16353152, 253359866, 3857162432, 58255767098, 876627759872, 13168963989626, 197671319438912, 2966027888106938, 44497125235352192, 667503827640776186, 10012886060527865792, 150195591435759857978, 2252949975250575898112
Offset: 4

Author

Roman I. Vasquez, Jan 25 2021

Keywords

Comments

Start with a complete bipartite graph K(4,n) with vertex sets A and B where |A| = 4 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where all three removed edges are incident to the same point in A. So this sequence gives the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 4 X n matrices (with n at least 4) with three fixed zero entries all in the same row and no zero rows or columns.
Take a complete bipartite graph K(4,n) (with n at least 4) having parts A and B where |A| = 4. This sequence gives the number of edge covers of the graph obtained from this K(4,n) graph after removing three edges, where all three removed edges are incident same vertex in A.

Crossrefs

Other sequences of segments from removing edges from bipartite graphs: A335608-A335613, A337416-A337418.
Polygonal chain sequences: A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Number of {0,1} n X n matrices with no zero rows or columns: A048291.

Formula

a(n) = 343*15^(n-3) - 424*7^(n-3) + 28*3^(n-2) - 3.
From Stefano Spezia, Jan 26 2021: (Start)
G.f.: 2*x^4*(1213 - 2962*x + 2001*x^2)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n > 7. (End)

A340898 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 4) missing three edges, where all three removed edges are incident to the same vertex in the 3-point set.

Original entry on oeis.org

104, 1064, 8480, 62480, 446744, 3155384, 22172240, 155459360, 1088976584, 7625119304, 53382684800, 373699342640, 2615957045624, 18311884260824, 128183744650160, 897287877024320, 6281020132589864, 43967155908387944, 307770136299492320
Offset: 4

Author

Roman I. Vasquez, Jan 25 2021

Keywords

Comments

Start with a complete bipartite graph K(3,n) with vertex sets A and B where |A| = 3 and |B| is at least 4. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing three edges, where all three removed edges are incident to the same point in A. So this sequence gives the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 3 X n matrices (with n at least 4) with three fixed zero entries all in the same row and no zero rows or columns.
Take a complete bipartite graph K(3,n) (with n at least 4) having parts A and B where |A| = 3. This sequence gives the number of edge covers of the graph obtained from this K(3,n) graph after removing three edges, where all three removed edges are incident same vertex in A.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 27*7^(n-3) - 29*3^(n-3) + 2.
From Stefano Spezia, Jan 26 2021: (Start)
G.f.: 8*x^4*(13 - 10*x)/(1 - 11*x + 31*x^2 - 21*x^3).
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n > 6. (End)

A340897 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 6-point set and are also not incident to the same vertex in the other set.

Original entry on oeis.org

21043, 2338345, 190200379, 13516195777, 902364046723, 58476376861465, 3735244109884939, 236920394417284657, 14975763121178295763, 945018874264393643785, 59584148902740043271899, 3755288737092394598648737, 236629307506201555636890403
Offset: 3

Author

Roman I. Vasquez, Jan 25 2021

Keywords

Comments

Start with a complete bipartite graph K(6,n) with vertex sets A and B where |A| = 6 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A and are also not incident to the same point in B. So this sequence gives the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 6 X n matrices (with n at least 3) with two fixed zero entries not in the same row or column and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 3) having parts A and B where |A| = 6. This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A and are also not incident to the same vertex in B.

Crossrefs

Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 961*63^(n-2) - 1830*31^(n-2) + 1359*15^(n-2) - 484*7^(n-2) + 79*3^(n-2) - 4.

A340201 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(5,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 5-point set and are also not incident to the same vertex in the other set.

Original entry on oeis.org

2899, 145387, 5566147, 190200379, 6173845939, 195645606667, 6129507633187, 190986695659099, 5935198857377299, 184210557438511147, 5713819738261143427, 177177809705712311419, 5493253144857237049459, 170301963687088948318027, 5279527621005195132400867
Offset: 3

Author

Roman I. Vasquez, Dec 31 2020

Keywords

Comments

Start with a complete bipartite graph K(5,n) with vertex sets A and B where |A| = 5 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A and are also not incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 5 X n matrices (with n at least 3) with two fixed zero entries not in the same row or column and no zero rows or columns.
Take a complete bipartite graph K(5,n) (with n at least 3) having parts A and B where |A| = 5. This sequence gives the number of edge covers of the graph obtained from this K(5,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A and are also not incident to the same vertex in B.

Crossrefs

Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 225*31^(n-2) - 357*15^(n-2) + 202*7^(n-2) - 46*3^(n-2) + 3.
From Alejandro J. Becerra Jr., Feb 14 2021: (Start)
G.f.: x^3*(263655*x^4 - 415464*x^3 + 183886*x^2 - 19856*x + 2899)/((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)).
a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(a-4) + 9765*a(n-5). (End)

A340200 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 4-point set and are also not incident to the same vertex in the other set.

Original entry on oeis.org

379, 8281, 145387, 2338345, 36206299, 551097721, 8322744907, 125235896905, 1881303825979, 28238921924761, 423719401402027, 6356740091100265, 95357745044060059, 1430412681964995001, 21456515775287188747, 321850015455044492425, 4827766183620976460539
Offset: 3

Author

Roman I. Vasquez, Dec 31 2020

Keywords

Comments

Start with a complete bipartite graph K(4,n) with vertex sets A and B where |A| = 4 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A and are also not incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 4 X n matrices (with n at least 3) with two fixed zero entries not in the same row or column and no zero rows or columns.
Take a complete bipartite graph K(4,n) (with n at least 3) having parts A and B where |A| = 4. This sequence gives the number of edge covers of the graph obtained from this K(4,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A and are also not incident to the same vertex in B.

Crossrefs

Other sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Formula

a(n) = 49*15^(n-2) - 60*7^(n-2) + 22*3^(n-2) - 2.
From Stefano Spezia, Dec 31 2020: (Start)
G.f.: x^3*(379 - 1573*x + 4365*x^2 - 2835*x^3)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n > 6. (End)

A340199 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 3-point set and are also not incident to the same vertex in the other set.

Original entry on oeis.org

43, 379, 2899, 21043, 149563, 1053739, 7396579, 51837283, 363044683, 2541863899, 17794700659, 124567864723, 871989933403, 6103974174859, 42727953147139, 299096073799363, 2093673721903723, 14655719669250619, 102590048532528019
Offset: 3

Author

Roman I. Vasquez, Dec 31 2020

Keywords

Comments

Start with a complete bipartite graph K(3,n) with vertex sets A and B where |A| = 3 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A and are also not incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 3 X n matrices (with n at least 3) with two fixed zero entries not in the same row or column and no zero rows or columns.
Take a complete bipartite graph K(3,n) (with n at least 3) having parts A and B where |A| = 3. This sequence gives the number of edge covers of the graph obtained from this K(3,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A and are also not incident to the same vertex in B.

Crossrefs

Other sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    LinearRecurrence[{11,-31,21},{43,379,2899},20] (* Harvey P. Dale, Apr 10 2024 *)

Formula

a(n) = 9*7^(n-2) - 7*3^(n-2) + 1.
From Stefano Spezia, Dec 31 2020: (Start)
G.f.: x^3*(43 - 94*x + 63*x^2)/(1 - 11*x + 31*x^2 - 21*x^3).
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n > 5. (End)