A326210 Number of labeled simple graphs with vertices {1..n} containing a nesting pair of edges, where two edges {a,b}, {c,d} are nesting if a < c and b > d or a > c and b < d.
0, 0, 0, 0, 16, 672, 29888, 2071936, 268204288, 68717285888, 35184350796800, 36028796807919616, 73786976292712960000, 302231454903635611721728, 2475880078570760326175178752, 40564819207303340845566684397568, 1329227995784915872903782635437883392
Offset: 0
Keywords
Examples
The a(4) = 16 nesting edge-sets: {14,23} {12,14,23} {13,14,23} {14,23,24} {14,23,34} {12,13,14,23} {12,14,23,24} {12,14,23,34} {13,14,23,24} {13,14,23,34} {14,23,24,34} {12,13,14,23,24} {12,13,14,23,34} {12,14,23,24,34} {13,14,23,24,34} {12,13,14,23,24,34} The a(4) = 16 crossing edge-sets: {13,24} {12,13,24} {13,14,24} {13,23,24} {13,24,34} {12,13,14,24} {12,13,23,24} {12,13,24,34} {13,14,23,24} {13,14,24,34} {13,23,24,34} {12,13,14,23,24} {12,13,14,24,34} {12,13,23,24,34} {13,14,23,24,34} {12,13,14,23,24,34}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!OrderedQ[Last/@#]&]],{n,0,5}]
-
PARI
seq(n)={my(p=1 + 3/2*x - x^2 - x/2*sqrt(1 - 12*x + 4*x^2 + O(x^n))); concat([0], vector(n, k, 2^binomial(k,2)-polcoef(p,k)))} \\ Andrew Howroyd, Aug 26 2019
Extensions
Terms a(7) and beyond from Andrew Howroyd, Aug 26 2019
Comments