cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A326211 Number of unsortable normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 1, 17, 170, 1455, 11678, 92871, 752473
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is unsortable if no permutation has an ordered concatenation, or equivalently if the concatenation of its lexicographically-ordered parts is not weakly increasing. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(3) = 1 and a(4) = 17 multiset partitions:
  {{1,3},{2}}  {{1,1,3},{2}}
               {{1,2},{1,2}}
               {{1,2},{1,3}}
               {{1,2,3},{2}}
               {{1,2,4},{3}}
               {{1,3},{2,2}}
               {{1,3},{2,3}}
               {{1,3},{2,4}}
               {{1,3,3},{2}}
               {{1,3,4},{2}}
               {{1,4},{2,3}}
               {{1},{1,3},{2}}
               {{1},{2,4},{3}}
               {{1,3},{2},{2}}
               {{1,3},{2},{3}}
               {{1,3},{2},{4}}
               {{1,4},{2},{3}}
		

Crossrefs

Unsortable set partitions are A058681.
Sortable normal multiset partitions are A326212.
Non-crossing normal multiset partitions are A324171.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],!OrderedQ[Join@@#]&]],{n,0,5}]

Formula

A255906(n) = a(n) + A326212(n).

A326244 Number of labeled n-vertex simple graphs without crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 36, 160, 704, 3088, 13536, 59328, 260032, 1139712
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Crossrefs

The case for set partitions is A001519.
Simple graphs with crossing or nesting edges are A326279.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326279(n).
Conjectures from Colin Barker, Jun 28 2019: (Start)
G.f.: (1 - x)*(1 - 4*x) / (1 - 6*x + 8*x^2 - 4*x^3).
a(n) = 6*a(n-1) - 8*a(n-2) + 4*a(n-3) for n>2.
(End)

A326209 Number of nesting labeled digraphs with vertices {1..n}.

Original entry on oeis.org

0, 0, 4, 408, 64528
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

Two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.
Also unsortable digraphs with vertices {1..n}, where a digraph is sortable if, when the edges are listed in lexicographic order, their targets are weakly increasing.
Also the number of semicrossing digraphs with vertices {1..n}, where two edges (a,b), (c,d) are semicrossing if a < c and b < d or a > c and b > d. For example, the a(2) = 4 semicrossing digraph edge-sets are:
{11,22}
{11,12,22}
{11,21,22}
{11,12,21,22}

Examples

			The a(2) = 4 nesting digraph edge-sets:
  {12,21}
  {11,12,21}
  {12,21,22}
  {11,12,21,22}
		

Crossrefs

Non-nesting digraphs are A326237.
Nesting set partitions are A016098.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],!OrderedQ[Last/@#]&]],{n,4}]

Formula

A002416(n) = a(n) + A326237(n).

A326250 Number of weakly nesting simple graphs with vertices {1..n}.

Original entry on oeis.org

0, 0, 0, 3, 50, 982, 32636, 2096723
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d.

Crossrefs

Non-nesting set partitions are A000108.
Non-crossing graphs are A054726.
Nesting digraphs are A326209.
Crossing graphs are A326210.
MM-numbers of nesting multiset partitions are A326256.

Programs

  • Mathematica
    wnsXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x<=z
    				

Formula

Conjecture: A006125(n) = a(n) + A000108(n).

A326330 Number of simple graphs with vertices {1..n} whose nesting edges are connected.

Original entry on oeis.org

1, 1, 2, 4, 8, 30, 654
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected.

Crossrefs

The covering case is the inverse binomial transform A326331.
Graphs whose crossing edges are connected are A324328.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[nestcmpts[#]]<=1&]],{n,0,5}]

A326252 Number of digraphs with vertices {1..n} whose increasing edges are crossing.

Original entry on oeis.org

0, 0, 0, 0, 16384, 22020096, 62679678976, 556181084962816
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

A directed edge (a,b) is increasing if a < b. Two edges (a,b), (c,d) are crossing if a < c < b < d or c < a < d < b.

Crossrefs

Simple graphs whose edges are crossing are A326210.
Digraphs whose increasing edges are not crossing are A326251.
Digraphs whose edges are not crossing are A326237.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

a(n) = 2^(n * (n + 1)/2) * A326210(n).

A326279 Number of labeled n-vertex simple graphs containing either a crossing or a nesting pair of edges.

Original entry on oeis.org

0, 0, 0, 0, 28, 864, 32064, 2094064
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 28 edge-sets:
  {13,24}  {12,13,24}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {14,23}  {12,14,23}  {12,13,14,24}  {12,13,14,23,34}
           {13,14,23}  {12,13,23,24}  {12,13,14,24,34}
           {13,14,24}  {12,13,24,34}  {12,13,23,24,34}
           {13,23,24}  {12,14,23,24}  {12,14,23,24,34}
           {13,24,34}  {12,14,23,34}  {13,14,23,24,34}
           {14,23,24}  {13,14,23,24}
           {14,23,34}  {13,14,23,34}
                       {13,14,24,34}
                       {13,23,24,34}
                       {14,23,24,34}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326244(n).

A326331 Number of simple graphs covering the vertices {1..n} whose nesting edges are connected.

Original entry on oeis.org

1, 0, 1, 0, 1, 14, 539
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected.

Crossrefs

The non-covering case is the binomial transform A326330.
Covering graphs whose crossing edges are connected are A324327.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[nestcmpts[#]]<=1&]],{n,0,5}]

A326339 Number of connected simple graphs with vertices {1..n} and no crossing or nesting edges.

Original entry on oeis.org

1, 0, 1, 4, 12, 36, 108, 324
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.
Appears to be essentially the same as A003946.

Examples

			The a(2) = 1 through a(4) = 36 edge-sets:
  {12}  {12,13}     {12,13,14}
        {12,23}     {12,13,34}
        {13,23}     {12,14,34}
        {12,13,23}  {12,23,24}
                    {12,23,34}
                    {12,24,34}
                    {13,23,34}
                    {14,24,34}
                    {12,13,14,34}
                    {12,13,23,34}
                    {12,14,24,34}
                    {12,23,24,34}
		

Crossrefs

Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
The case with only crossing edges forbidden is A007297.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				
Showing 1-10 of 19 results. Next