cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A326244 Number of labeled n-vertex simple graphs without crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 36, 160, 704, 3088, 13536, 59328, 260032, 1139712
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Crossrefs

The case for set partitions is A001519.
Simple graphs with crossing or nesting edges are A326279.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326279(n).
Conjectures from Colin Barker, Jun 28 2019: (Start)
G.f.: (1 - x)*(1 - 4*x) / (1 - 6*x + 8*x^2 - 4*x^3).
a(n) = 6*a(n-1) - 8*a(n-2) + 4*a(n-3) for n>2.
(End)

A326250 Number of weakly nesting simple graphs with vertices {1..n}.

Original entry on oeis.org

0, 0, 0, 3, 50, 982, 32636, 2096723
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d.

Crossrefs

Non-nesting set partitions are A000108.
Non-crossing graphs are A054726.
Nesting digraphs are A326209.
Crossing graphs are A326210.
MM-numbers of nesting multiset partitions are A326256.

Programs

  • Mathematica
    wnsXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x<=z
    				

Formula

Conjecture: A006125(n) = a(n) + A000108(n).

A326329 Number of simple graphs covering {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 0, 1, 4, 13, 44, 149, 504, 1705, 5768, 19513, 66012
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.
Is this (apart from offsets) the same as A073717? - R. J. Mathar, Jul 04 2019

Crossrefs

The case for set partitions is A001519.
Covering simple graphs are A006129.
The case with just nesting or just crossing edges forbidden is A324169.
The binomial transform is the non-covering case A326244.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326340 Number of maximal simple graphs with vertices {1..n} and no crossing or nesting edges.

Original entry on oeis.org

1, 1, 1, 1, 4, 9, 19, 42
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Crossrefs

Covering graphs with no crossing or nesting edges are A326329.
The case with only crossing edges forbidden is A000108 shifted right twice.
Simple graphs without crossing or nesting edges are A326244.
Connected graphs with no crossing or nesting edges are A326339.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Subsets[Range[n],{2}]],!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326289 a(0) = 0, a(n) = 2^binomial(n,2) - 2^(n - 1).

Original entry on oeis.org

0, 0, 0, 4, 56, 1008, 32736, 2097088, 268435328, 68719476480, 35184372088320, 36028797018962944, 73786976294838204416, 302231454903657293672448, 2475880078570760549798240256, 40564819207303340847894502555648, 1329227995784915872903807060280311808
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Number of simple graphs with vertices {1..n} containing two edges {a,b}, {c,d} that are weakly crossing, meaning a <= c < b <= d or c <= a < d <= b.

Examples

			The a(4) = 56 weakly crossing edge-sets:
  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {12,34}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {13,14}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
  {13,23}  {12,14,34}  {12,14,23,24}
  {13,24}  {12,23,24}  {12,14,23,34}
  {13,34}  {12,23,34}  {12,14,24,34}
  {14,24}  {12,24,34}  {12,23,24,34}
  {14,34}  {13,14,23}  {13,14,23,24}
  {23,24}  {13,14,24}  {13,14,23,34}
  {23,34}  {13,14,34}  {13,14,24,34}
  {24,34}  {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
           {23,24,34}
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,0,2^Binomial[n,2]-2^(n-1)],{n,0,5}]
Showing 1-6 of 6 results.