cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A229865 Number of n X n 0..1 arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Also known as labeled Eulerian digraphs allowing loops. - Brendan McKay, May 12 2019

Examples

			Some solutions for n=4:
  0 0 0 1     0 0 1 0     0 0 0 1     0 0 1 0     0 0 1 1
  0 1 0 0     1 0 0 0     1 0 1 0     0 0 1 1     1 0 0 1
  0 0 0 1     0 1 0 0     0 1 0 1     0 1 1 1     1 1 1 0
  1 0 1 0     0 0 0 1     0 1 1 0     1 1 0 0     0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
  {}
  {11}
  {22}
  {11,22}
  {12,21}
  {11,12,21}
  {12,21,22}
  {11,12,21,22}
(End)
		

Crossrefs

Column 1 of A229870.
The unlabeled version is A308111.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)

Formula

a(n) = 2^n * A007080(n). - Andrew Howroyd, Sep 11 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, May 14 2019
Terms a(11) and beyond from Andrew Howroyd, Sep 11 2019

A326251 Number of digraphs with vertices {1..n} whose increasing edges are not crossing.

Original entry on oeis.org

1, 2, 16, 512, 49152, 11534336, 6039797760, 6768868458496, 15885743998107648, 77083611222073409536, 767126299049285413502976, 15572324598183490228037091328, 642316330843573124053884695740416, 53681919993405760099480940765478125568
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

A directed edge (a,b) is increasing if a < b. Two edges (a,b), (c,d) are crossing if a < c < b < d or c < a < d < b.
Conjecture: Also the number of non-nesting digraphs with vertices {1..n} whose increasing edges are not crossing, where two edges (a,b), (c,d) are nesting if a < c < d < b or c < a < b < d.

Crossrefs

Simple graphs whose edges are non-crossing are A054726.
Digraphs whose edges are not crossing are A326237.
Digraphs whose increasing edges are crossing are A326252.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

a(n) = 2^(n * (n + 1)/2) * A054726(n).

A326290 Number of non-crossing n-vertex graphs with loops.

Original entry on oeis.org

1, 2, 8, 64, 768, 11264, 184320, 3227648, 59179008, 1121714176, 21803040768, 432218832896, 8705009516544, 177618573852672, 3663840373899264, 76277945940836352, 1600706475536154624, 33823752545680490496, 719051629204296695808, 15368152475218787434496
Offset: 0

Views

Author

Gus Wiseman, Sep 12 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b.

Examples

			The a(0) = 1 through a(2) = 8 non-crossing edge sets with loops:
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x
    				
  • PARI
    seq(n)=Vec(1+3*x-4*x^2 -x*sqrt(1-24*x+16*x^2 + O(x^n))) \\ Andrew Howroyd, Sep 14 2019

Formula

From Andrew Howroyd, Sep 14 2019: (Start)
a(n) = 2^n * A054726(n).
G.f.: 1 + 3*x - 4*x^2 - x*sqrt(1 - 24*x + 16*x^2). (End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 14 2019

A326253 Number of sequences of distinct ordered pairs of positive integers up to n.

Original entry on oeis.org

1, 2, 65, 986410, 56874039553217, 42163840398198058854693626, 1011182700521015817607065606491025592595137, 1653481537585545171449931620186035466059689728986775126016505970
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Examples

			The a(2) = 65 sequences:
  ()  (11)  (11,12)  (11,12,21)  (11,12,21,22)
      (12)  (11,21)  (11,12,22)  (11,12,22,21)
      (21)  (11,22)  (11,21,12)  (11,21,12,22)
      (22)  (12,11)  (11,21,22)  (11,21,22,12)
            (12,21)  (11,22,12)  (11,22,12,21)
            (12,22)  (11,22,21)  (11,22,21,12)
            (21,11)  (12,11,21)  (12,11,21,22)
            (21,12)  (12,11,22)  (12,11,22,21)
            (21,22)  (12,21,11)  (12,21,11,22)
            (22,11)  (12,21,22)  (12,21,22,11)
            (22,12)  (12,22,11)  (12,22,11,21)
            (22,21)  (12,22,21)  (12,22,21,11)
                     (21,11,12)  (21,11,12,22)
                     (21,11,22)  (21,11,22,12)
                     (21,12,11)  (21,12,11,22)
                     (21,12,22)  (21,12,22,11)
                     (21,22,11)  (21,22,11,12)
                     (21,22,12)  (21,22,12,11)
                     (22,11,12)  (22,11,12,21)
                     (22,11,21)  (22,11,21,12)
                     (22,12,11)  (22,12,11,21)
                     (22,12,21)  (22,12,21,11)
                     (22,21,11)  (22,21,11,12)
                     (22,21,12)  (22,21,12,11)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*Binomial[n^2,k],{k,0,n^2}],{n,0,4}]

Formula

a(n) = A000522(n^2).

A326292 Number of crossing integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 43, 57, 80, 105, 142, 186, 248, 320, 421, 539, 698, 889, 1140, 1438, 1827, 2291, 2882, 3593, 4489, 5559, 6902, 8503, 10484, 12853, 15763
Offset: 0

Views

Author

Gus Wiseman, Oct 03 2019

Keywords

Comments

A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. An integer partition is crossing if, by replacing each part with its multiset of prime indices, we obtain a crossing multiset partition.

Examples

			The a(31) = 1 through a(36) = 7 partitions:
  21,10  21,10,1  21,10,2    21,10,3      21,10,4        21,10,5
                  21,10,1,1  21,10,2,1    21,10,2,2      21,10,3,2
                             21,10,1,1,1  21,10,3,1      21,10,4,1
                                          21,10,2,1,1    21,10,2,2,1
                                          21,10,1,1,1,1  21,10,3,1,1
                                                         21,10,2,1,1,1
                                                         21,10,1,1,1,1,1
		

Crossrefs

The Heinz numbers of these partitions are given by A324170.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Extensions

More terms from Jinyuan Wang, Jun 28 2020
Showing 1-5 of 5 results.