cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A326237 Number of non-nesting digraphs with vertices {1..n}, where two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.

Original entry on oeis.org

1, 2, 12, 104, 1008, 10272, 107712, 1150592
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

These are digraphs with the property that, if the edges are listed in lexicographic order, the sequence of targets is weakly increasing. For example, the digraph with lexicographically ordered edge set {(1,2),(2,1),(3,1),(3,2)} is nesting because the targets are (2,1,1,2), a sequence that is not weakly increasing.
Also the number of non-semicrossing digraphs with vertices {1..n}, where two edges (a,b), (c,d) are semicrossing if a < c and b < d or a > c and b > d. For example, the a(2) = 4 non-semicrossing digraph edge-sets are:
{}
{11}
{12}
{21}
{22}
{11,12}
{11,21}
{12,21}
{12,22}
{21,22}
{11,12,21}
{12,21,22}
Apparently a duplicate of A152254. - R. J. Mathar, Jul 12 2019

Examples

			The a(2) = 12 non-nesting digraph edge-sets:
  {}
  {11}
  {12}
  {21}
  {22}
  {11,12}
  {11,21}
  {11,22}
  {12,22}
  {21,22}
  {11,12,22}
  {11,21,22}
		

Crossrefs

Nesting digraphs are A326209.
Non-nesting set partitions are A000108.
Non-capturing set partitions are A054391.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]

Formula

A002416(n) = a(n) + A326209(n).

A229865 Number of n X n 0..1 arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Also known as labeled Eulerian digraphs allowing loops. - Brendan McKay, May 12 2019

Examples

			Some solutions for n=4:
  0 0 0 1     0 0 1 0     0 0 0 1     0 0 1 0     0 0 1 1
  0 1 0 0     1 0 0 0     1 0 1 0     0 0 1 1     1 0 0 1
  0 0 0 1     0 1 0 0     0 1 0 1     0 1 1 1     1 1 1 0
  1 0 1 0     0 0 0 1     0 1 1 0     1 1 0 0     0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
  {}
  {11}
  {22}
  {11,22}
  {12,21}
  {11,12,21}
  {12,21,22}
  {11,12,21,22}
(End)
		

Crossrefs

Column 1 of A229870.
The unlabeled version is A308111.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)

Formula

a(n) = 2^n * A007080(n). - Andrew Howroyd, Sep 11 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, May 14 2019
Terms a(11) and beyond from Andrew Howroyd, Sep 11 2019

A326252 Number of digraphs with vertices {1..n} whose increasing edges are crossing.

Original entry on oeis.org

0, 0, 0, 0, 16384, 22020096, 62679678976, 556181084962816
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

A directed edge (a,b) is increasing if a < b. Two edges (a,b), (c,d) are crossing if a < c < b < d or c < a < d < b.

Crossrefs

Simple graphs whose edges are crossing are A326210.
Digraphs whose increasing edges are not crossing are A326251.
Digraphs whose edges are not crossing are A326237.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

a(n) = 2^(n * (n + 1)/2) * A326210(n).

A326253 Number of sequences of distinct ordered pairs of positive integers up to n.

Original entry on oeis.org

1, 2, 65, 986410, 56874039553217, 42163840398198058854693626, 1011182700521015817607065606491025592595137, 1653481537585545171449931620186035466059689728986775126016505970
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Examples

			The a(2) = 65 sequences:
  ()  (11)  (11,12)  (11,12,21)  (11,12,21,22)
      (12)  (11,21)  (11,12,22)  (11,12,22,21)
      (21)  (11,22)  (11,21,12)  (11,21,12,22)
      (22)  (12,11)  (11,21,22)  (11,21,22,12)
            (12,21)  (11,22,12)  (11,22,12,21)
            (12,22)  (11,22,21)  (11,22,21,12)
            (21,11)  (12,11,21)  (12,11,21,22)
            (21,12)  (12,11,22)  (12,11,22,21)
            (21,22)  (12,21,11)  (12,21,11,22)
            (22,11)  (12,21,22)  (12,21,22,11)
            (22,12)  (12,22,11)  (12,22,11,21)
            (22,21)  (12,22,21)  (12,22,21,11)
                     (21,11,12)  (21,11,12,22)
                     (21,11,22)  (21,11,22,12)
                     (21,12,11)  (21,12,11,22)
                     (21,12,22)  (21,12,22,11)
                     (21,22,11)  (21,22,11,12)
                     (21,22,12)  (21,22,12,11)
                     (22,11,12)  (22,11,12,21)
                     (22,11,21)  (22,11,21,12)
                     (22,12,11)  (22,12,11,21)
                     (22,12,21)  (22,12,21,11)
                     (22,21,11)  (22,21,11,12)
                     (22,21,12)  (22,21,12,11)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*Binomial[n^2,k],{k,0,n^2}],{n,0,4}]

Formula

a(n) = A000522(n^2).
Showing 1-4 of 4 results.