A326293
Number of non-nesting, topologically connected simple graphs with vertices {1..n}.
Original entry on oeis.org
1, 1, 2, 4, 8, 27, 192, 1750
Offset: 0
The inverse binomial transform is the covering case
A326349.
Topologically connected simple graphs are
A324328.
Non-crossing simple graphs are
A054726.
Topologically connected set partitions are
A099947.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
A326337
Number of simple graphs covering the vertices {1..n} whose weakly nesting edges are connected.
Original entry on oeis.org
1, 0, 1, 3, 29, 595, 23437
Offset: 0
The binomial transform is the non-covering case
A326338.
Simple graphs whose nesting edges are connected are
A326330.
-
wknXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)];
wknestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],wknXQ]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[wknestcmpts[#]]<=1&]],{n,0,5}]
A326331
Number of simple graphs covering the vertices {1..n} whose nesting edges are connected.
Original entry on oeis.org
1, 0, 1, 0, 1, 14, 539
Offset: 0
The non-covering case is the binomial transform
A326330.
Covering graphs whose crossing edges are connected are
A324327.
-
nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[nestcmpts[#]]<=1&]],{n,0,5}]
A326335
Number of set partitions of {1..n} whose nesting blocks are connected.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 21, 86, 394, 1974, 10696
Offset: 0
The a(0) = 1 through a(6) = 21 set partitions:
{} {1} {12} {123} {1234} {12345} {123456}
{14}{23} {125}{34} {1236}{45}
{134}{25} {1245}{36}
{14}{235} {125}{346}
{145}{23} {1256}{34}
{15}{234} {126}{345}
{134}{256}
{1345}{26}
{1346}{25}
{136}{245}
{14}{2356}
{145}{236}
{1456}{23}
{146}{235}
{15}{2346}
{156}{234}
{16}{2345}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
Simple graphs whose nesting blocks are connected are
A326330.
Set partitions whose crossing blocks are connected are
A099947.
Set partitions whose capturing blocks are connected are
A326336.
-
nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
nestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],nesXQ]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Length[nestcmpts[#]]<=1&]],{n,0,5}]
A326336
Number of set partitions of {1..n} whose capturing blocks are connected.
Original entry on oeis.org
1, 1, 1, 1, 2, 7, 24, 100, 458, 2279, 12270
Offset: 0
The a(0) = 1 through a(6) = 24 set partitions:
{} {1} {12} {123} {1234} {12345} {123456}
{14}{23} {125}{34} {1236}{45}
{134}{25} {1245}{36}
{135}{24} {1246}{35}
{14}{235} {125}{346}
{145}{23} {1256}{34}
{15}{234} {126}{345}
{134}{256}
{1345}{26}
{1346}{25}
{135}{246}
{1356}{24}
{136}{245}
{14}{2356}
{145}{236}
{1456}{23}
{146}{235}
{15}{2346}
{156}{234}
{16}{2345}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
Simple graphs whose capturing blocks are connected are
A326330.
Set partitions whose crossing blocks are connected are
A099947.
Set partitions whose nesting blocks are connected are
A326335.
-
capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
captcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],capXQ]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Length[captcmpts[#]]<=1&]],{n,0,6}]
A326338
Number of simple graphs with vertices {1..n} whose weakly nesting edges are connected.
Original entry on oeis.org
1, 1, 2, 7, 48, 781, 27518
Offset: 0
The inverse binomial transform is the covering case
A326337.
-
wknXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[Union[List/@#,Select[Subsets[#,{2}],wknXQ]]]]<=1&]],{n,0,5}]
A326349
Number of non-nesting, topologically connected simple graphs covering {1..n}.
Original entry on oeis.org
1, 0, 1, 0, 1, 11, 95, 797
Offset: 0
The a(5) = 11 edge-sets:
{13,14,25}
{13,24,25}
{13,24,35}
{14,24,35}
{14,25,35}
{13,14,24,25}
{13,14,24,35}
{13,14,25,35}
{13,24,25,35}
{14,24,25,35}
{13,14,24,25,35}
The binomial transform is the non-covering case
A326293.
Topologically connected, covering simple graphs are
A324327.
Non-crossing, covering simple graphs are
A324169.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
Showing 1-7 of 7 results.
Comments