A326330 Number of simple graphs with vertices {1..n} whose nesting edges are connected.
1, 1, 2, 4, 8, 30, 654
Offset: 0
Links
- Gus Wiseman, The a(5) = 30 nesting-connected simple graphs.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
wknXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)]; wknestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],wknXQ]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[wknestcmpts[#]]<=1&]],{n,0,5}]
The a(0) = 1 through a(6) = 21 set partitions: {} {1} {12} {123} {1234} {12345} {123456} {14}{23} {125}{34} {1236}{45} {134}{25} {1245}{36} {14}{235} {125}{346} {145}{23} {1256}{34} {15}{234} {126}{345} {134}{256} {1345}{26} {1346}{25} {136}{245} {14}{2356} {145}{236} {1456}{23} {146}{235} {15}{2346} {156}{234} {16}{2345} {15}{26}{34} {16}{23}{45} {16}{24}{35} {16}{25}{34}
nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; nestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],nesXQ]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],Length[nestcmpts[#]]<=1&]],{n,0,5}]
The a(0) = 1 through a(6) = 24 set partitions: {} {1} {12} {123} {1234} {12345} {123456} {14}{23} {125}{34} {1236}{45} {134}{25} {1245}{36} {135}{24} {1246}{35} {14}{235} {125}{346} {145}{23} {1256}{34} {15}{234} {126}{345} {134}{256} {1345}{26} {1346}{25} {135}{246} {1356}{24} {136}{245} {14}{2356} {145}{236} {1456}{23} {146}{235} {15}{2346} {156}{234} {16}{2345} {15}{26}{34} {16}{23}{45} {16}{24}{35} {16}{25}{34}
capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; captcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],capXQ]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],Length[captcmpts[#]]<=1&]],{n,0,6}]
wknXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[Union[List/@#,Select[Subsets[#,{2}],wknXQ]]]]<=1&]],{n,0,5}]
Comments