cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326330 Number of simple graphs with vertices {1..n} whose nesting edges are connected.

Original entry on oeis.org

1, 1, 2, 4, 8, 30, 654
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected.

Crossrefs

The covering case is the inverse binomial transform A326331.
Graphs whose crossing edges are connected are A324328.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[nestcmpts[#]]<=1&]],{n,0,5}]

A326331 Number of simple graphs covering the vertices {1..n} whose nesting edges are connected.

Original entry on oeis.org

1, 0, 1, 0, 1, 14, 539
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected.

Crossrefs

The non-covering case is the binomial transform A326330.
Covering graphs whose crossing edges are connected are A324327.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[nestcmpts[#]]<=1&]],{n,0,5}]

A326340 Number of maximal simple graphs with vertices {1..n} and no crossing or nesting edges.

Original entry on oeis.org

1, 1, 1, 1, 4, 9, 19, 42
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Crossrefs

Covering graphs with no crossing or nesting edges are A326329.
The case with only crossing edges forbidden is A000108 shifted right twice.
Simple graphs without crossing or nesting edges are A326244.
Connected graphs with no crossing or nesting edges are A326339.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Subsets[Range[n],{2}]],!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 35 edge-sets:
  {}  {12}  {12,13}  {12,13,14}  {12,13,14,34}
      {13}  {12,14}  {12,13,23}  {12,13,23,34}
      {14}  {12,23}  {12,13,34}  {12,14,24,34}
      {23}  {12,24}  {12,14,24}  {12,23,24,34}
      {24}  {13,14}  {12,14,34}
      {34}  {13,23}  {12,23,24}
            {13,34}  {12,23,34}
            {14,24}  {12,24,34}
            {14,34}  {13,14,34}
            {23,24}  {13,23,34}
            {23,34}  {14,24,34}
            {24,34}  {23,24,34}
		

Crossrefs

The inverse binomial transform is the covering case A326339.
Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjecture: a(n) = A052161(n - 2) + 1.

A326349 Number of non-nesting, topologically connected simple graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 95, 797
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(5) = 11 edge-sets:
  {13,14,25}
  {13,24,25}
  {13,24,35}
  {14,24,35}
  {14,25,35}
  {13,14,24,25}
  {13,14,24,35}
  {13,14,25,35}
  {13,24,25,35}
  {14,24,25,35}
  {13,14,24,25,35}
		

Crossrefs

The binomial transform is the non-covering case A326293.
Topologically connected, covering simple graphs are A324327.
Non-crossing, covering simple graphs are A324169.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
Showing 1-5 of 5 results.