cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326337 Number of simple graphs covering the vertices {1..n} whose weakly nesting edges are connected.

Original entry on oeis.org

1, 0, 1, 3, 29, 595, 23437
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. A graph has its weakly nesting edges connected if the graph whose vertices are the edges and whose edges are weakly nesting pairs of edges is connected.

Crossrefs

The binomial transform is the non-covering case A326338.
The non-weak case is A326331.
Simple graphs whose nesting edges are connected are A326330.

Programs

  • Mathematica
    wknXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)];
    wknestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],wknXQ]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[wknestcmpts[#]]<=1&]],{n,0,5}]

A326350 Number of non-nesting connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 0, 1, 4, 23, 157, 1182
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The inverse binomial transform is the non-covering case A326351.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326351 Number of non-nesting connected simple graphs on a subset of {1..n}.

Original entry on oeis.org

1, 1, 2, 8, 46, 323, 2565
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The binomial transform is the covering case A326350.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				
Showing 1-3 of 3 results.