A116880
Generalized Catalan triangle, called CM(1,2).
Original entry on oeis.org
1, 1, 3, 3, 7, 13, 13, 29, 41, 67, 67, 147, 195, 247, 381, 381, 829, 1069, 1277, 1545, 2307, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 95235, 205059, 255747, 290691, 320707, 351187, 388099, 446455, 636925
Offset: 0
Triangle begins:
1;
1, 3;
3, 7, 13;
13, 29, 41, 67;
67, 147, 195, 247, 381;
381, 829, 1069, 1277, 1545, 2307;
2307, 4995, 6339, 7379, 8451, 9975, 14589;
-
lim:=8: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1, x, lim+1): for n from 0 to lim do a[n,m]:=coeff(t, x, n):od:od: gf2:=g*sum(a[s,k]*(2*c)^k,k=0..s): for s from 0 to lim do t:=taylor(gf2, x, lim+1): for n from 0 to lim do b[n,s]:=coeff(t, x, n):od:od: seq(seq(b[n-s,s],s=0..n),n=0..lim); # Nathaniel Johnston, Apr 30 2011
A386834
a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(4*n-k-1,n-k).
Original entry on oeis.org
1, 8, 111, 1738, 28701, 488412, 8473387, 148994510, 2645999673, 47349481408, 852429930567, 15421507805106, 280126256513109, 5105764838932388, 93331970924544099, 1710369544783134614, 31412304686874624113, 578023658034894471048, 10654486069487503147135
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(4*n-k-1, n-k));
A386833
a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(3*n-k-1,n-k).
Original entry on oeis.org
1, 6, 59, 656, 7701, 93210, 1150495, 14395428, 181936169, 2317140014, 29691138099, 382334271544, 4943464235069, 64137141682242, 834561532624967, 10886878474010700, 142332442919829585, 1864423992564121686, 24464149489904517211, 321499324010641490016, 4230840338116037836901
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(3*n-k-1, n-k));
A386835
a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k-1,n-k).
Original entry on oeis.org
1, 5, 30, 198, 1375, 9843, 71876, 532220, 3981645, 30023265, 227803642, 1737227682, 13303481035, 102234258623, 787997000640, 6089345072056, 47161769198809, 365986358229645, 2845097133606422, 22151577531840830, 172710278146819959, 1348274852150114251
Offset: 0
-
Table[Sum[Binomial[2*n + 2, k]*Binomial[2*n - k - 1, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k-1, n-k));
A386843
a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 6, 39, 268, 1905, 13842, 102123, 761880, 5732325, 43417630, 330620895, 2528772132, 19412942809, 149497184298, 1154365194195, 8934458916912, 69291946278861, 538372925816886, 4189702003359687, 32651982699233340, 254800541773725633, 1990683254889381954
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k, n-k));
A386862
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
Original entry on oeis.org
1, 5, 42, 409, 4238, 45414, 496996, 5517929, 61909878, 700189606, 7968994124, 91158632250, 1047156227068, 12071222381456, 139569181458552, 1617879480097129, 18796461329347238, 218806784598226926, 2551538498649588892, 29800118958422522414, 348529038403155280548
Offset: 0
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+1, k)*binomial(2*n-k-1, n-k));
Showing 1-6 of 6 results.
Comments