cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386844 a(n) = Sum_{k=0..n} binomial(3*n+2,k) * binomial(3*n-k,n-k).

Original entry on oeis.org

1, 8, 83, 942, 11177, 136164, 1688031, 21187546, 268409813, 3424751568, 43948343243, 566607282118, 7333422759873, 95225755205564, 1239995365588919, 16186010348814258, 211729232160358317, 2774813844884684712, 36425708310248816547, 478880147399497482142, 6304133921156502650777
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n+2,k) * Binomial(3*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 06 2025
  • Mathematica
    Table[Sum[Binomial[3*n+2,k]*Binomial[3*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 06 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+2, k)*binomial(3*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(3*n+2)/(1-x)^(2*n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(2*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(2*n+k,k).
a(n) ~ 3^(3*n + 5/2) / (25 * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Aug 07 2025

A386845 a(n) = Sum_{k=0..n} binomial(4*n+2,k) * binomial(4*n-k,n-k).

Original entry on oeis.org

1, 10, 143, 2264, 37601, 642086, 11165395, 196658228, 3496849349, 62636490818, 1128525823927, 20429545554000, 371294468833193, 6770529284259934, 123811606398566299, 2269695135303598188, 41697091253148057485, 767476182916622450810, 14149874243880085356415
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+2, k)*binomial(4*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(4*n+2)/(1-x)^(3*n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(4*n+2,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(3*n+k,k).

A386868 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+2,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 8, 75, 760, 8030, 87036, 959623, 10710320, 120635550, 1368461440, 15611831774, 178932199152, 2058727445320, 23764328143220, 275083791201375, 3191938947518560, 37116092204482550, 432393735569959440, 5045632228616597290, 58965061323736782800, 690005032437397594260
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+2, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(2*n+2)/(1-2*x)^(n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-3*x)^(n+1)).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * (n-k+1) * binomial(2*n+2,k).
a(n) = Sum_{k=0..n} 3^k * (n-k+1) * binomial(n+k,k).
Showing 1-3 of 3 results.