cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386844 a(n) = Sum_{k=0..n} binomial(3*n+2,k) * binomial(3*n-k,n-k).

Original entry on oeis.org

1, 8, 83, 942, 11177, 136164, 1688031, 21187546, 268409813, 3424751568, 43948343243, 566607282118, 7333422759873, 95225755205564, 1239995365588919, 16186010348814258, 211729232160358317, 2774813844884684712, 36425708310248816547, 478880147399497482142, 6304133921156502650777
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n+2,k) * Binomial(3*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 06 2025
  • Mathematica
    Table[Sum[Binomial[3*n+2,k]*Binomial[3*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 06 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+2, k)*binomial(3*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(3*n+2)/(1-x)^(2*n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(2*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(2*n+k,k).
a(n) ~ 3^(3*n + 5/2) / (25 * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Aug 07 2025

A386843 a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 6, 39, 268, 1905, 13842, 102123, 761880, 5732325, 43417630, 330620895, 2528772132, 19412942809, 149497184298, 1154365194195, 8934458916912, 69291946278861, 538372925816886, 4189702003359687, 32651982699233340, 254800541773725633, 1990683254889381954
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(2*n+2)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(2*n+2,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(n+k,k).

A386870 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+2,k) * binomial(4*n-k,n-k).

Original entry on oeis.org

1, 14, 297, 7024, 174608, 4466622, 116403982, 3073417652, 81935130444, 2200645300312, 59455990356377, 1614089892481416, 43993649464273588, 1203123469832767556, 32997093202771098204, 907229481990010791100, 24997561841045998756604, 690088514785377393552360
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k)*Binomial(4*n+2,k) * Binomial(4*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 09 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[4*n+2,k]*Binomial[4*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 09 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+2, k)*binomial(4*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(4*n+2)/(1-2*x)^(3*n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-3*x)^(3*n+1)).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * (n-k+1) * binomial(4*n+2,k).
a(n) = Sum_{k=0..n} 3^k * (n-k+1) * binomial(3*n+k,k).
Showing 1-3 of 3 results.