A386843 a(n) = Sum_{k=0..n} binomial(2*n+2,k) * binomial(2*n-k,n-k).
1, 6, 39, 268, 1905, 13842, 102123, 761880, 5732325, 43417630, 330620895, 2528772132, 19412942809, 149497184298, 1154365194195, 8934458916912, 69291946278861, 538372925816886, 4189702003359687, 32651982699233340, 254800541773725633, 1990683254889381954
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(2*n-k, n-k));
Formula
a(n) = [x^n] (1+x)^(2*n+2)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(2*n+2,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(n+k,k).