cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386834 a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 8, 111, 1738, 28701, 488412, 8473387, 148994510, 2645999673, 47349481408, 852429930567, 15421507805106, 280126256513109, 5105764838932388, 93331970924544099, 1710369544783134614, 31412304686874624113, 578023658034894471048, 10654486069487503147135
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(4*n+1)/(1-x)^(3*n).
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^(3*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(3*n+k-1,k).
Conjecture D-finite with recurrence +3*n*(16543753*n -26995933)*(3*n-1)*(3*n-2)*a(n) +(-1669899251*n^4 -26931977989*n^3 +131963667975*n^2 -188283072995*n +85757456660)*a(n-1) +2*(-61301926003*n^4 +515926265010*n^3 -1655392333929*n^2 +2311146075302*n -1165379619540)*a(n-2) -96*(39221117*n -50949760)*(4*n-9)*(2*n-5)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Aug 19 2025

A386836 a(n) = Sum_{k=0..n} binomial(3*n+2,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 7, 70, 782, 9199, 111465, 1376764, 17234600, 217891693, 2775766091, 35574777154, 458169648722, 5924747347835, 76876586813629, 1000418599504408, 13051488907037580, 170643358430006553, 2235400439909584575, 29333436132847784062, 385507257723471794774, 5073372058467119928391
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+2, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(3*n+2)/(1-x)^(2*n).
a(n) = [x^n] 1/((1-x)^3 * (1-2*x)^(2*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+2,k) * binomial(n-k+2,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k-1,k) * binomial(n-k+2,n-k).

A386937 a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 5, 38, 325, 2934, 27314, 259356, 2496813, 24281510, 237978598, 2346750900, 23257207714, 231438363324, 2311082461380, 23146003391352, 232402586792061, 2338665721556742, 23579860411878110, 238157209512898500, 2409099858256570710, 24403155769842168660
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(3*n+1)/(1-x)^n.
a(n) = [x^n] 1/((1-x)^(n+2) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(2*n-k+1,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(2*n-k+1,n-k).
D-finite with recurrence n*(n+1)*a(n) +42*n*(n-2)*a(n-1) +12*(-33*n^2+120*n-95)*a(n-2) +72*(-63*n^2+189*n-110)*a(n-3) +3456*(3*n-8)*(3*n-10)*a(n-4)=0. - R. J. Mathar, Aug 19 2025
Showing 1-3 of 3 results.