cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A348410 Number of nonnegative integer solutions to n = Sum_{i=1..n} (a_i + b_i), with b_i even.

Original entry on oeis.org

1, 1, 5, 19, 85, 376, 1715, 7890, 36693, 171820, 809380, 3830619, 18201235, 86770516, 414836210, 1988138644, 9548771157, 45948159420, 221470766204, 1069091485500, 5167705849460, 25009724705460, 121171296320475, 587662804774890, 2852708925078675, 13859743127937876
Offset: 0

Views

Author

César Eliud Lozada, Oct 17 2021

Keywords

Comments

Suppose n objects are to be distributed into 2n baskets, half of these white and half black. White baskets may contain 0 or any number of objects, while black baskets may contain 0 or an even number of objects. a(n) is the number of distinct possible distributions.

Examples

			Some examples (semicolon separates white basket from black baskets):
For n=1: {{1 ; 0}} - Total possible ways: 1.
For n=2: {{0, 0 ; 0, 2}, {0, 0 ; 2, 0}, {0, 2 ; 0, 0}, {1, 1 ; 0, 0}, {2, 0 ; 0, 0}} - Total possible ways: 5.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
          add(b(n-j, t-1)*(1+iquo(j, 2)), j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 17 2021
  • Mathematica
    (* giveList=True produces the list of solutions *)
    (* giveList=False gives the number of solutions *)
    counter[objects_, giveList_: False] :=
      Module[{n = objects, nb, eq1, eqa, eqb, eqs, var, sol, var2, list},
       nb = n;
       eq1 = {Total[Map[a[#] + 2*b[#] &, Range[nb]]] - n == 0};
       eqa = {And @@ Map[0 <= a[#] <= n &, Range[nb]]};
       eqb = {And @@ Map[0 <= b[#] <= n &, Range[nb]]};
       eqs = {And @@ Join[eq1, eqa, eqb]};
       var = Flatten[Map[{a[#], b[#]} &, Range[nb]]];
       var = Join[Map[a[#] &, Range[nb]], Map[b[#] &, Range[nb]]];
       sol = Solve[eqs, var, Integers];
       var2 = Join[Map[a[#] &, Range[nb]], Map[2*b[#] &, Range[nb]]];
       list = Sort[Map[var2 /. # &, sol]];
       list = Map[StringReplace[ToString[#], {"," -> " ;"}, n] &, list];
       list = Map[StringReplace[#, {";" -> ","}, n - 1] &, list];
       Return[
        If[giveList, Print["Total: ", Length[list]]; list, Length[sol]]];
       ];
    (* second program: *)
    b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n], Sum[b[n - j, t - 1]*(1 + Quotient[j, 2]), {j, 0, n}]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 16 2023, after Alois P. Heinz *)

Formula

Conjecture: D-finite with recurrence +7168*n*(2*n-1)*(n-1)*a(n) -64*(n-1)*(1759*n^2-5294*n+5112)*a(n-1) +12*(7561*n^3-75690*n^2+165271*n-101070)*a(n-2) +5*(110593*n^3-743946*n^2+1659971*n-1232778)*a(n-3) +2680*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Oct 19 2021
From Vaclav Kotesovec, Nov 01 2021: (Start)
Recurrence (of order 2): 16*(n-1)*n*(2*n - 1)*(51*n^2 - 162*n + 127)*a(n) = (n-1)*(5457*n^4 - 22791*n^3 + 32144*n^2 - 17536*n + 3072)*a(n-1) + 8*(2*n - 3)*(4*n - 7)*(4*n - 5)*(51*n^2 - 60*n + 16)*a(n-2).
a(n) ~ sqrt(3 + 5/sqrt(17)) * (107 + 51*sqrt(17))^n / (sqrt(Pi*n) * 2^(6*n+2)). (End)
From Peter Bala, Feb 21 2022: (Start)
a(n) = [x^n] ( (1 - x)*(1 - x^2) )^(-n). Cf. A234839.
a(n) = Sum_{k = 0..floor(n/2)} binomial(2*n-2*k-1,n-2*k)*binomial(n+k-1,k).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 9*x^3 + 32*x^4 + 119*x^5 + ... is the g.f. of A063020.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
The o.g.f. A(x) is the diagonal of the bivariate rational function 1/(1 - t/((1-x)*(1-x^2))) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*(1-x)*(1-x^2) ). Then A(x) = 1 + x*d/dx (log(F(x))). (End)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n+k-1, k)*binomial(2*n-k-1, n-k). Cf. A352373. - Peter Bala, Jun 05 2024

Extensions

More terms from Alois P. Heinz, Oct 17 2021

A365751 Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^3 ).

Original entry on oeis.org

1, 2, 8, 38, 201, 1134, 6688, 40734, 254237, 1617572, 10452416, 68408626, 452530659, 3020870352, 20324167488, 137672551630, 938154745773, 6426806842566, 44234352581896, 305743015718028, 2121318029754770, 14769052147618740, 103148538125870880
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(4*n-k+2, n-k))/(n+1);
    
  • SageMath
    def A365751(n):
        h = binomial(4*n + 2, n) * hypergeometric([-n, n + 1], [-4 * n - 2], -1) / (n + 1)
        return simplify(h)
    print([A365751(n) for n in range(23)])  # Peter Luschny, Sep 20 2023

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(3*n-2*k+1,n-2*k). - Seiichi Manyama, Jan 18 2024
a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^3 )^(n+1). - Seiichi Manyama, Feb 16 2024

A370100 a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 5, 47, 500, 5615, 65005, 767396, 9183144, 110995695, 1351922495, 16566597047, 204010570296, 2522556212228, 31298015910140, 389458822888280, 4858487926378000, 60742838865326319, 760901358321592611, 9547848458062427405, 119990407515367475700
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[4*n, k]*Binomial[2*n - k - 1, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 12 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n, k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^4/(1-x) )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)/(1+x)^4 ). See A365754.
From Peter Bala, Jun 08 2024: (Start)
2*n*(n - 1)*(2*n - 1)*(51*n^2 - 144*n + 100)*a(n) = -(n - 1)*(5457*n^4 - 20865*n^3 + 26366*n^2 - 12172*n + 1560)*a(n-1) + 64*(2*n - 3)*(4*n - 5)*(4*n - 7)*(51*n^2 - 42*n + 7)*a(n-2) with a(0) = 1 and a(1) = 5.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and r. See A352373 for a more general conjecture. (End)
a(n) ~ sqrt(3 + 5/sqrt(17)) * (51*sqrt(17) - 107)^n / (sqrt(Pi*n) * 2^(3*n + 3/2)). - Vaclav Kotesovec, Jun 12 2024
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(2*n+1) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n,k) * binomial(3*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(3*n-k,n-k). (End)

A370103 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n+k-1,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 1, 7, 28, 151, 751, 3976, 20924, 112023, 602182, 3260257, 17724928, 96766072, 529977917, 2910984412, 16027963528, 88440034711, 488918693466, 2707393587802, 15014647096172, 83380131228401, 463593653171495, 2580426581343200, 14377474236172320
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(2*n+k-1, k)*binomial(4*n-k-1, n-k));
    
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial(u*n, n-s*k));
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = [x^n] 1/( (1+x)^2 * (1-x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1+x)^2*(1-x)^3 ). See A365854.
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(n,n-2*k).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(2*n-2*k-1,n-2*k).

A370105 a(n) = Sum_{k=0..n} (-1)^k * binomial(n+k-1,k) * binomial(5*n-k-1,n-k).

Original entry on oeis.org

1, 3, 23, 192, 1687, 15253, 140504, 1311292, 12357015, 117318162, 1120436273, 10752242592, 103596191608, 1001494496863, 9709576926716, 94369011385192, 919175964169623, 8970063281146830, 87685232945278010, 858446087522807784, 8415669293820893937
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k-1, k)*binomial(5*n-k-1, n-k));
    
  • PARI
    a(n, s=2, t=1, u=3) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = [x^n] 1/( (1+x) * (1-x)^4 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1+x)*(1-x)^4 ). See A365752.
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(4*n-2*k-1,n-2*k).
Showing 1-5 of 5 results.