A386811
a(n) = Sum_{k=0..n} binomial(4*n+1,k).
Original entry on oeis.org
1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0
-
[&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+1, k));
A178792
Dot product of the rows of triangle A046899 with vector (1,2,4,8,...) (= A000079).
Original entry on oeis.org
1, 5, 31, 209, 1471, 10625, 78079, 580865, 4361215, 32978945, 250806271, 1916280833, 14698053631, 113104519169, 872801042431, 6751535300609, 52337071357951, 406468580343809, 3162019821780991, 24634626678980609, 192179216026959871
Offset: 0
a(3) = (1,4,10,20)dot(1,2,4,8) = 209.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Brownian motion and generalized Catalan numbers, Journal of Integer Sequences, Vol. 14 (2011).
- Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1, arXiv:1909.11222 [math.NT], 2019.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
-
a := n -> binomial(2*n+2,n+1)*hypergeom([-n, n + 1], [n + 2], -1)/2:
seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 21 2017
-
CoefficientList[Series[(3-Sqrt[1-8*x])/(2*(1+x)*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
Table[Sum[2^k*Binomial[n + k, k], {k, 0, n}], {n, 0, 20}] (* Michael De Vlieger, Oct 28 2016 *)
a[n_] := (-1)^(n + 1) - 2^(n + 1) (2n + 1) Binomial[2n, n] Hypergeometric2F1[1, 2n + 2, n + 2, 2]/(n + 1); Array[a, 22, 0] (* Robert G. Wilson v, Jul 21 2018 *)
A383326
a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(3*n-k,n-k).
Original entry on oeis.org
1, 7, 71, 799, 9439, 114687, 1419263, 17791487, 225172991, 2870945791, 36819740671, 474470776831, 6138443497471, 79681448443903, 1037278449106943, 13536444411412479, 177030837540093951, 2319618918724403199, 30444928900076666879, 400189735705069486079, 5267487129636270243839
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(3*n-k, n-k));
A386834
a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(4*n-k-1,n-k).
Original entry on oeis.org
1, 8, 111, 1738, 28701, 488412, 8473387, 148994510, 2645999673, 47349481408, 852429930567, 15421507805106, 280126256513109, 5105764838932388, 93331970924544099, 1710369544783134614, 31412304686874624113, 578023658034894471048, 10654486069487503147135
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(4*n-k-1, n-k));
A386898
a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(5*n-k,n-k).
Original entry on oeis.org
1, 11, 199, 4031, 85919, 1885311, 42154111, 955020287, 21847988735, 503573013503, 11675986431999, 272033089535999, 6363380561141759, 149354395882487807, 3515589114309115903, 82957940541503045631, 1961823306198598418431, 46482660516543479939071
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*n+1, k)*binomial(5*n-k, n-k));
A385639
a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(2*n-k,n-k).
Original entry on oeis.org
1, 7, 69, 748, 8485, 98847, 1171884, 14066808, 170421669, 2079531685, 25520363869, 314653207128, 3894577133356, 48362609654548, 602248101550920, 7517853111444528, 94044248726758821, 1178641094940246897, 14796230460187072719, 186022053254555479500, 2341837809478393341885
Offset: 0
-
Table[Sum[Binomial[4*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(2*n-k, n-k));
Showing 1-6 of 6 results.
Comments