cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A039598 Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan's triangle.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 14, 14, 6, 1, 42, 48, 27, 8, 1, 132, 165, 110, 44, 10, 1, 429, 572, 429, 208, 65, 12, 1, 1430, 2002, 1638, 910, 350, 90, 14, 1, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of leaves at level k+1 in all ordered trees with n+1 edges. - Emeric Deutsch, Jan 15 2005
Riordan array ((1-2x-sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x)). Inverse array is A053122. - Paul Barry, Mar 17 2005
T(n,k) is the number of walks of n steps, each in direction N, S, W, or E, starting at the origin, remaining in the upper half-plane and ending at height k (see the R. K. Guy reference, p. 5). Example: T(3,2)=6 because we have ENN, WNN, NEN, NWN, NNE and NNW. - Emeric Deutsch, Apr 15 2005
Triangle T(n,k), 0<=k<=n, read by rows given by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 30 2007
Number of (2n+1)-step walks from (0,0) to (2n+1,2k+1) and consisting of steps u=(1,1) and d=(1,-1) in which the path stays in the nonnegative quadrant. Examples: T(2,0)=5 because we have uuudd, uudud, uuddu, uduud, ududu; T(2,1)=4 because we have uuuud, uuudu, uuduu, uduuu; T(2,2)=1 because we have uuuuu. - Philippe Deléham, Apr 16 2007, Apr 18 2007
Triangle read by rows: T(n,k)=number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and two types of steps H=(1,0); example: T(3,1)=14 because we have UDU, UUD, 4 HHU paths, 4 HUH paths and 4 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
With offset [1,1] this is the (ordinary) convolution triangle a(n,m) with o.g.f. of column m given by (c(x)-1)^m, where c(x) is the o.g.f. for Catalan numbers A000108. See the Riordan comment by Paul Barry.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
T(n,k)/2^(2n+1) = coefficients of the maximally flat lowpass digital differentiator of the order N=2n+3. - Pavel Holoborodko (pavel(AT)holoborodko.com), Dec 19 2008
The signed triangle S(n,k) := (-1)^(n-k)*T(n,k) provides the transformation matrix between f(n,l) := L(2*l)*5^n*F(2*l)^(2*n+1) (F=Fibonacci numbers A000045, L=Lucas numbers A000032) and F(4*l*(k+1)), k = 0, ..., n, for each l>=0: f(n,l) = Sum_{k=0..n} S(n,k)*F(4*l*(k+1)), n>=0, l>=0. Proof: the o.g.f. of the l.h.s., G(l;x) := Sum_{n>=0} f(n,l)*x^n = F(4*l)/(1 - 5*F(2*l)^2*x) is shown to match the o.g.f. of the r.h.s.: after an interchange of the n- and k-summation, the Riordan property of S = (C(x)/x,C(x)) (compare with the above comments by Paul Barry), with C(x) := 1 - c(-x), with the o.g.f. c(x) of A000108 (Catalan numbers), is used, to obtain, after an index shift, first Sum_{k>=0} F(4*l*(k))*GS(k;x), with the o.g.f of column k of triangle S which is GS(k;x) := Sum_{n>=k} S(n,k)*x^n = C(x)^(k+1)/x. The result is GF(l;C(x))/x with the o.g.f. GF(l,x) := Sum_{k>=0} F(4*l*k)*x^k = x*F(4*l)/(1-L(4*l)*x+x^2) (see a comment on A049670, and A028412). If one uses then the identity L(4*n) - 5*F(2*n)^2 = 2 (in Koshy's book [reference under A065563] this is No. 15, p. 88, attributed to Lucas, 1876), the proof that one recovers the o.g.f. of the l.h.s. from above boils down to a trivial identity on the Catalan o.g.f., namely 1/c^2(-x) = 1 + 2*x - (x*c(-x))^2. - Wolfdieter Lang, Aug 27 2012
O.g.f. for row polynomials R(x) := Sum_{k=0..n} a(n,k)*x^k:
((1+x) - C(z))/(x - (1+x)^2*z) with C the o.g.f. of A000108 (Catalan numbers). From Riordan ((C(x)-1)/x,C(x)-1), compare with a Paul Barry comment above. This coincides with the o.g.f. given by Emeric Deutsch in the formula section. - Wolfdieter Lang, Nov 13 2012
The A-sequence for this Riordan triangle is [1,2,1] and the Z-sequence is [2,1]. See a W. Lang link under A006232 with details and references. - Wolfdieter Lang, Nov 13 2012
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n+1, 2*k+1). T(n, k) appears in the formula for the (2*n+1)-th power of the algebraic number rho(N) := 2*cos(Pi/N) = R(N, 2) in terms of the even-indexed diagonal/side length ratios R(N, 2*(k+1)) = S(2*k+1, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310): rho(N)^(2*n+1) = Sum_{k=0..n} T(n, k)*R(N, 2*(k+1)), n >= 0, identical in N >= 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears. For the even powers of rho(n) see A039599. (End)
The tridiagonal Toeplitz production matrix P in the Example section corresponds to the unsigned Cartan matrix for the simple Lie algebra A_n as n tends to infinity (cf. Damianou ref. in A053122). - Tom Copeland, Dec 11 2015 (revised Dec 28 2015)
T(n,k) is the number of pairs of non-intersecting walks of n steps, each in direction N or E, starting at the origin, and such that the end points of the two paths are separated by a horizontal distance of k. See Shapiro 1976. - Peter Bala, Apr 12 2017
Also the convolution triangle of the Catalan numbers A000108. - Peter Luschny, Oct 07 2022

Examples

			Triangle T(n,k) starts:
n\k     0      1      2      3      4     5    6    7   8  9 10
0:      1
1:      2      1
2:      5      4      1
3:     14     14      6      1
4:     42     48     27      8      1
5:    132    165    110     44     10     1
6:    429    572    429    208     65    12    1
7:   1430   2002   1638    910    350    90   14    1
8:   4862   7072   6188   3808   1700   544  119   16   1
9:  16796  25194  23256  15504   7752  2907  798  152  18  1
10: 58786  90440  87210  62016  33915 14364 4655 1120 189 20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012.
Production matrix begins:
2, 1
1, 2, 1
0, 1, 2, 1
0, 0, 1, 2, 1
0, 0, 0, 1, 2, 1
0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 0, 1, 2, 1
- _Philippe Deléham_, Nov 07 2011
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: T(5,1) = 165 = 1*42 + 2*48 +1*27. The Riordan A-sequence is [1,2,1].
Recurrence from Riordan Z-sequence [2,1]: T(5,0) = 132 = 2*42 + 1*48. (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
  Example for rho(N) = 2*cos(Pi/N) powers:
  n=2: rho(N)^5 = 5*R(N, 2) + 4*R(N, 4) + 1*R(N, 6) = 5*S(1, rho(N)) + 4*S(3, rho(N)) + 1*S(5, rho(N)), identical in N >= 1. For N=5 (the pentagon with only one distinct diagonal) the degree delta(5) = 2, hence R(5, 4) and R(5, 6) can be reduced, namely to R(5, 1) = 1 and R(5, 6) = -R(5,1) = -1, respectively. Thus rho(5)^5 = 5*R(N, 2) + 4*1  + 1*(-1) = 3 + 5*R(N, 2) = 3 + 5*rho(5), with the golden section rho(5). (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Mirror image of A050166. Row sums are A001700.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n,n-k) - Binomial(2*n,n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2015
    
  • Maple
    T:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); # N. J. A. Sloane, Aug 26 2013
    # Uses function PMatrix from A357368. Adds row and column above and to the left.
    PMatrix(10, n -> binomial(2*n, n) / (n + 1)); # Peter Luschny, Oct 07 2022
  • Mathematica
    Flatten[Table[Binomial[2n, n-k] - Binomial[2n, n-k-2], {n,0,9}, {k,0,n}]] (* Jean-François Alcover, May 03 2011 *)
  • PARI
    T(n,k)=binomial(2*n,n-k) - binomial(2*n,n-k-2) \\ Charles R Greathouse IV, Nov 07 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle.
    def A039598_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 1
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
            if b : print([D[z] for z in (1..h-1) ])
    A039598_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

Row n: C(2n, n-k) - C(2n, n-k-2).
a(n, k) = C(2n+1, n-k)*2*(k+1)/(n+k+2) = A050166(n, n-k) = a(n-1, k-1) + 2*a(n-1, k)+ a (n-1, k+1) [with a(0, 0) = 1 and a(n, k) = 0 if n<0 or nHenry Bottomley, Sep 24 2001
From Philippe Deléham, Feb 14 2004: (Start)
T(n, 0) = A000108(n+1), T(n, k) = 0 if n0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+2) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
Sum_{k>=0} T(m, k)*T(n, k) = A000108(m+n+1). (End)
T(n, k) = A009766(n+k+1, n-k) = A033184(n+k+2, 2k+2). - Philippe Deléham, Feb 14 2004
Sum_{j>=0} T(k, j)*A039599(n-k, j) = A028364(n, k). - Philippe Deléham, Mar 04 2004
Antidiagonal Sum_{k=0..n} T(n-k, k) = A000957(n+3). - Gerald McGarvey, Jun 05 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super- and subdiagonals and [2,2,2,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
G.f.: G(t,x) = C^2/(1-txC^2), where C = (1-sqrt(1-4x))/(2x) is the Catalan function. From here G(-1,x)=C, i.e., the alternating row sums are the Catalan numbers (A000108). - Emeric Deutsch, Jan 20 2007
Sum_{k=0..n} T(n,k)*x^k = A000957(n+1), A000108(n), A000108(n+1), A001700(n), A049027(n+1), A076025(n+1), A076026(n+1) for x=-2,-1,0,1,2,3,4 respectively (see square array in A067345). - Philippe Deléham, Mar 21 2007, Nov 04 2011
Sum_{k=0..n} T(n,k)*(k+1) = 4^n. - Philippe Deléham, Mar 30 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A035324(n,k), A035324 with offset 0 (0 <= k <= n). - Philippe Deléham, Mar 30 2007
T(n,k) = A053121(2*n+1,2*k+1). - Philippe Deléham, Apr 16 2007, Apr 18 2007
T(n,k) = A039599(n,k) + A039599(n,k+1). - Philippe Deléham, Sep 11 2007
Sum_{k=0..n+1} T(n+1,k)*k^2 = A029760(n). - Philippe Deléham, Dec 16 2007
Sum_{k=0..n} T(n,k)*A059841(k) = A000984(n). - Philippe Deléham, Nov 12 2008
G.f.: 1/(1-xy-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A194727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011
From Peter Bala, Dec 21 2014: (Start)
This triangle factorizes in the Riordan group as ( C(x), x*C(x) ) * ( 1/(1 - x), x/(1 - x) ) = A033184 * A007318, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
Let U denote the lower unit triangular array with 1's on or below the main diagonal and zeros elsewhere. For k = 0,1,2,... define U(k) to be the lower unit triangular block array
/I_k 0\
\ 0 U/ having the k X k identity matrix I_k as the upper left block; in particular, U(0) = U. Then this array equals the bi-infinite product (...*U(2)*U(1)*U(0))*(U(0)*U(1)*U(2)*...). (End)
From Peter Bala, Jul 21 2015: (Start)
O.g.f. G(x,t) = (1/x) * series reversion of ( x/f(x,t) ), where f(x,t) = ( 1 + (1 + t)*x )^2/( 1 + t*x ).
1 + x*d/dx(G(x,t))/G(x,t) = 1 + (2 + t)*x + (6 + 4*t + t^2)*x^2 + ... is the o.g.f for A094527. (End)
Conjecture: Sum_{k=0..n} T(n,k)/(k+1)^2 = H(n+1)*A000108(n)*(2*n+1)/(n+1), where H(n+1) = Sum_{k=0..n} 1/(k+1). - Werner Schulte, Jul 23 2015
From Werner Schulte, Jul 25 2015: (Start)
Sum_{k=0..n} T(n,k)*(k+1)^2 = (2*n+1)*binomial(2*n,n). (A002457)
Sum_{k=0..n} T(n,k)*(k+1)^3 = 4^n*(3*n+2)/2.
Sum_{k=0..n} T(n,k)*(k+1)^4 = (2*n+1)^2*binomial(2*n,n).
Sum_{k=0..n} T(n,k)*(k+1)^5 = 4^n*(15*n^2+15*n+4)/4. (End)
The o.g.f. G(x,t) is such that G(x,t+1) is the o.g.f. for A035324, but with an offset of 0, and G(x,t-1) is the o.g.f. for A033184, again with an offset of 0. - Peter Bala, Sep 20 2015
Denote this lower triangular array by L; then L * transpose(L) is the Cholesky factorization of the Hankel matrix ( 1/(i+j)*binomial(2*i+2*j-2, i+j-1) )A172417%20read%20as%20a%20square%20array.%20See%20Chamberland,%20p.%201669.%20-%20_Peter%20Bala">i,j >= 1 = A172417 read as a square array. See Chamberland, p. 1669. - _Peter Bala, Oct 15 2023

Extensions

Typo in one entry corrected by Philippe Deléham, Dec 16 2007

A092392 Triangle read by rows: T(n,k) = C(2*n - k,n), 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 20, 10, 4, 1, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 48620, 24310, 11440, 5005, 2002, 715, 220, 55, 10, 1, 184756, 92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1
Offset: 0

Views

Author

Ralf Stephan, Mar 21 2004

Keywords

Comments

First column is C(2*n,n) or A000984. Central coefficients are C(3*n,n) or A005809. - Paul Barry, Oct 14 2009
T(n,k) = A046899(n,n-k), k = 0..n-1. - Reinhard Zumkeller, Jul 27 2012
From Peter Bala, Nov 03 2015: (Start)
Viewed as the square array [binomial (2*n + k, n + k)]n,k>=0 this is the generalized Riordan array ( 1/sqrt(1 - 4*x),c(x) ) in the sense of the Bala link, where c(x) is the o.g.f. for A000108.
The square array factorizes as ( 1/(2 - c(x)),x*c(x) ) * ( 1/(1 - x),1/(1 - x) ), which equals the matrix product of A100100 with the square Pascal matrix [binomial (n + k,k)]n,k>=0. See the example below. (End)

Examples

			From _Paul Barry_, Oct 14 2009: (Start)
Triangle begins
  1,
  2, 1,
  6, 3, 1,
  20, 10, 4, 1,
  70, 35, 15, 5, 1,
  252, 126, 56, 21, 6, 1,
  924, 462, 210, 84, 28, 7, 1,
  3432, 1716, 792, 330, 120, 36, 8, 1
Production array is
  2, 1,
  2, 1, 1,
  2, 1, 1, 1,
  2, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1, 1,
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
As a square array = A100100 * square Pascal matrix:
  /1   1  1  1 ...\   / 1          \/1 1  1  1 ...\
  |2   3  4  5 ...|   | 1 1        ||1 2  3  4 ...|
  |6  10 15 21 ...| = | 3 2 1      ||1 3  6 10 ...|
  |20 35 56 84 ...|   |10 6 3 1    ||1 4 10 20 ...|
  |70 ...         |   |35 ...      ||1 ...        |
- _Peter Bala_, Nov 03 2015
		

Crossrefs

Programs

  • Haskell
    a092392 n k = a092392_tabl !! (n-1) !! (k-1)
    a092392_row n = a092392_tabl !! (n-1)
    a092392_tabl = map reverse a046899_tabl
    -- Reinhard Zumkeller, Jul 27 2012
    
  • Magma
    /* As a triangle */ [[Binomial(2*n-k, n): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 22 2017
  • Maple
    A092392 := proc(n,k)
        binomial(2*n-k,n-k) ;
    end proc:
    seq(seq(A092392(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    Table[Binomial[2 n - k, n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 19 2016 *)
  • Maxima
    C(x):=(1-sqrt(1-4*x))/2;
    A(x,y):=(1/sqrt(1-4*x))/(1-y*C(x));
    taylor(A(x,y),y,0,10,x,0,10); /* Vladimir Kruchinin, Mar 19 2016 */
    
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(2*n - k,n), ", "))) \\ G. C. Greubel, Nov 22 2017
    

Formula

As a number triangle, this is T(n, k) = if(k <= n, C(2*n - k, n), 0). Its row sums are C(2*n + 1, n + 1) = A001700. Its diagonal sums are A176287. - Paul Barry, Apr 23 2005
G.f. of column k: 2^k/[sqrt(1 - 4*x)*(1 + sqrt(1 - 4*x))^k].
As a number triangle, this is the Riordan array (1/sqrt(1 - 4*x), x*c(x)), c(x) the g.f. of A000108. - Paul Barry, Jun 24 2005
G.f.: A(x,y)=1/sqrt(1 - 4*x)/(1-y*x*C(x)), where C(x) is g.f. of Catalan numbers. - Vladimir Kruchinin, Mar 19 2016

Extensions

Diagonal sums comment corrected by Paul Barry, Apr 14 2010
Offset corrected by R. J. Mathar, Feb 08 2013

A059481 Triangle read by rows. T(n, k) = binomial(n+k-1, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378
Offset: 0

Views

Author

Fabian Rothelius, Feb 04 2001

Keywords

Comments

T(n,k) is the number of ways to distribute k identical objects in n distinct containers; containers may be left empty.
T(n,k) is the number of nondecreasing functions f from {1,...,k} to {1,...,n}. - Dennis P. Walsh, Apr 07 2011
Coefficients of Faber polynomials for function x^2/(x-1). - Michael Somos, Sep 09 2003
Consider k-fold Cartesian products CP(n,k) of the vector A(n)=[1,2,3,...,n].
An element of CP(n,k) is a n-tuple T_t of the form T_t=[i_1,i_2,i_3,...,i_k] with t=1,...,n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j > i_(j+1), T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j > i_(j+1)).
The indicator function which tests on i_j = i_(j+1) generates A158497, which contains further examples of this type of counting.
Triangle of the numbers of combinations of k elements with repetitions from n elements {1,2,...,n} (when every element i, i=1,...,n, appears in a k-combination either 0, or 1, or 2, ..., or k times). - Vladimir Shevelev, Jun 19 2012
G.f. for Faber polynomials is -log(-t*x-(1-sqrt(1-4*t))/2+1)=sum(n>0, T(n,k)*t^k/n). - Vladimir Kruchinin, Jul 04 2013
Values of complete homogeneous symmetric polynomials with all arguments equal to 1, or, equivalently, the number of monomials of degree k in n variables. - Tom Copeland, Apr 07 2014
Row k >= 0 of the infinite square array A[k,n] = C(n,k), n >= 0, would start with k zeros in front of the first nonzero element C(k,k) = 1; this here is the triangle obtained by taking the first k+1 nonzero terms C(k .. 2k, k) of rows k = 0, 1, 2, ... of that array. - M. F. Hasler, Mar 05 2017

Examples

			The triangle T(n,k), n >= 0, 0 <= k <= n, begins
  1      A000217
  1 1   /     A000292
  1 2  3    /    A000332
  1 3  6  10    /    A000389
  1 4 10  20  35    /     A000579
  1 5 15  35  70 126     /
  1 6 21  56 126 252  462
  1 7 28  84 210 462  924 1716
  1 8 36 120 330 792 1716 3432 6435
.
T(3,2)=6 considers the CP with the 3^2=9 elements (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), and does not count the 3 of them which are (2,1),(3,1) and (3,2).
T(3,3) = 10 because the ways to distribute the 3 objects into the three containers are: (3,0,0) (0,3,0) (0,0,3) (2,1,0) (1,2,0) (2,0,1) (1,0,2) (0,1,2) (0,2,1) (1,1,1), for a total of 10 possibilities.
T(3,3)=10 since (x^2/(x-1))^3 = (x+1+1/x+O(1/x^2))^3 = x^3+3x^2+6x+10+O(x).
T(4,2)=10 since there are 10 nondecreasing functions f from {1,2} to {1,2,3,4}. Using <f(1),f(2)> to denote such a function, the ten functions are <1,1>, <1,2>, <1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, and <4,4>. - _Dennis P. Walsh_, Apr 07 2011
T(4,0) + T(4,1) + T(4,2) + T(4,3) = 1 + 4 + 10 + 20 = 35 = T(4,4). - _Jonathan Sondow_, Jun 28 2014
From _Paul Curtz_, Jun 18 2018: (Start)
Consider the array
2,    1,    1,    1,    1,    1,     ... = A054977(n)
1,    1/2,  1/3,  1/4,  1/5,  1/6,   ... = 1/(n+1) = 1/A000027(n)
1/3,  1/6,  1/10, 1/15, 1/21, 1/28,  ... = 2/((n+2)*(n+3)) = 1/A000217(n+2)
1/10, 1/20, 1/35, 1/56, 1/84, 1/120, ... = 6/((n+3)*(n+4)*(n+5)) =1/A000292(n+2) (see the triangle T(n,k)).
Every row is an autosequence of the second kind. (See OEIS Wiki, Autosequence.)
By decreasing antidiagonals the denominator of the array is a(n).
Successive vertical denominators: A088218(n), A000984(n), A001700(n), A001791(n+1), A002054(n), A002694(n).
Successive diagonal denominators: A165817(n), A005809(n), A045721(n), A025174(n+1), A004319(n). (End)
Without the first row (2, 1, 1, 1, ... ), the array leads to A165257(n) instead of a(n). - _Paul Curtz_, Jun 19 2018
		

References

  • R. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, 4th edition, chapter 1.4.

Crossrefs

Columns: T(n,1) = A000027(n), n >= 1. T(n,2) = A000217(n) = A161680(n+1), n >= 2. T(n,3) = A000292(n), n >= 3. T(n,4) = A000332(n+3), n >= 4. T(n,5) = A000389(n+4), n >= 5. T(n,6) = A000579(n+5), n >=6. T(n,k) = A001405(n+k-1) for k <= n <= k+2. [Corrected and extended by M. F. Hasler, Mar 05 2017]
Rows: T(5,k) = A000332(k+4). T(6,k) = A000389(k+5). T(7,k) = A000579(k+6).
Diagonals: T(n,n) = A001700(n-1). T(n,n-1) = A000984(n-1).
T(n,k) = A046899(n-1,k). - R. J. Mathar, Mar 26 2009
Take Pascal's triangle A007318, delete entries to the right of a vertical line just right of center, then scan the diagonals.
For a signed version of this triangle see A027555.
Row sums give A000984.
Cf. A007318, A158497, A100100 (mirrored), A009766.

Programs

  • GAP
    Flat(List([0..10], n->List([0..n], k->Binomial(n+k-1, k)))); # Stefano Spezia, Oct 30 2018
    
  • Haskell
    a059481 n k = a059481_tabl !! n !! n
    a059481_row n = a059481_tabl !! n
    a059481_tabl = map reverse a100100_tabl
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    &cat [[&*[ Binomial(n+k-1,k)]: k in [0..n]]: n in [0..30] ]; // Vincenzo Librandi, Apr 08 2011
    
  • Maple
    for n from 0 to 10 do for k from 0 to n do print(binomial(n+k-1,k)) ; od: od: # R. J. Mathar, Mar 31 2009
  • Mathematica
    t[n_, k_] := Binomial[n+k-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 09 2013 *)
    (* The combinatorial objects defined in the first comment can, for n >= 1, be generated by: *) r[n_, k_] := FrobeniusSolve[ConstantArray[1,n],k]; (* Peter Luschny, Jan 24 2019 *)
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 0 thru n do disp(sjoin(makelist(binomial(i+j-1, j), j, 0, i), " ")); display_triangle(10); /* triangle output */ /* Stefano Spezia, Oct 30 2018 */
    
  • PARI
    {T(n, k) = binomial( n+k-1, k)}; \\ Michael Somos, Sep 09 2003, edited by M. F. Hasler, Mar 05 2017
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( Pol(((1 / (x - x^2) + x * O(x^n))^n + O(x)) * x^n), k))}; /* Michael Somos, Sep 09 2003 */
    
  • Sage
    [[binomial(n+k-1,k) for k in range(n+1)] for n in range(11)] # G. C. Greubel, Nov 21 2018

Formula

T(n,0) + T(n,1) + . . . + T(n,n-1) = T(n,n). - Jonathan Sondow, Jun 28 2014
From Peter Bala, Jul 21 2015: (Start)
T(n, k) = Sum_{j = k..n} (-1)^(k+j)*binomial(2*n,n+j)*binomial(n+j-1,j)* binomial(j,k) (gives the correct value T(n,k) = 0 for k > n).
O.g.f.: 1/2*( x*(2*x - 1)/(sqrt(1 - 4*t*x)*(1 - x - t)) + (1 + 2*x)/sqrt(1 - 4*t*x) + (1 - t)/(1 - x - t) ) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ....
n-th row polynomial R(n,t) = [x^n] ( (1 + x)^2/(1 + x(1 - t)) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + t)*x + (1 + 2*t + 2*t^2)*x^2 + (1 + 3*t + 5*t^2 + 5*t^3)*x^3 + ... is the o.g.f for A009766. (End)
a(n) = abs(A027555(n)). - M. F. Hasler, Mar 05 2017
For n >= k > 0, T(n, k) = Sum_{j=1..n} binomial(k + j - 2, k - 1) = Sum_{j=1..n} A007318(k + j - 2, k - 1). - Stefano Spezia, Oct 30 2018
T(n, k) = RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023

Extensions

Offset changed from 1 to 0 by R. J. Mathar, Jan 15 2013
Edited by M. F. Hasler, Mar 05 2017

A211419 a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!).

Original entry on oeis.org

1, 10, 198, 4420, 104006, 2521260, 62300700, 1560167752, 39457579590, 1005490725148, 25776935824948, 664048851069240, 17175945353271068, 445775181599116600, 11602978540817349240, 302767701121286251920, 7917664916276259668550, 207452338901630123085180
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 3, b = 2 of the following result (see Bober, Theorem 1.2): Let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211420 (a = 4, b = 1), A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1).
This is the case m = 3n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
Sequence terms are given by the coefficient of x^n in the expansion of ((1 + x)^(k+2)/(1 - x)^k)^n when k = 4. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.

Crossrefs

Cf. A000984 (k=0), A091527 (k=1), A001448 (k=2), A262732 (k=3), A262733 (k=5), A211421 (k=6), A262738.

Programs

  • Magma
    [Factorial(6*n) * Factorial(2*n) / (Factorial(4*n) * Factorial(3*n) * Factorial(n)): n in [0..20]]; // Vincenzo Librandi, May 03 2018
  • Maple
    A211419 := n-> (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!):
    seq(A211419(n), n=0..20);
    # Using the o.g.f. from Karol A. Penson and Jean-Marie Maillard:
    u := 27*x-1: c := (u^3*((3*x*u)^(1/2)*(12+81*x)-u^2+216*x-7))^(1/3):
    gf := ((c^2-2*c*u+27*u*(7-81*x)*x-4*u)/(6*c*u^2))^(1/2):
    ser := series(gf, x, 8); # Peter Luschny, May 03 2018
    ogf := hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z): ser := series(ogf, z, 20):
    seq(coeff(ser, z, n), n = 0..17);  # Peter Luschny, Feb 22 2024
  • Mathematica
    Table[(6 n)!*(2 n)!/((4 n)!*(3 n)!*n!), {n, 0, 16}] (* Michael De Vlieger, Oct 04 2015 *)
    CoefficientList[Series[Sqrt[(4 + 7290 x^2 - 59049 x^3 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3) + (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(2/3) - 27 x (11 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3)))/(6 (1 - 27 x)^2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3))],{x,0,16}],x] (* Karol A. Penson and Jean-Marie Maillard, May 02 2018 *)
  • PARI
    a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(6*n, i) * binomial(5*n-i-1, n-i).
a(n) = [x^n] ( (1 + x)^6/(1 - x)^4 )^n.
O.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + 51002*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^4/ (1 + x)^6. See A262738. (End)
a(n) ~ 27^n/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
O.g.f.: sqrt((4 + 7290*x^2 - 59049*x^3 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3) + (8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(2/3) - 27*x*(11 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3)))/(6*(1 - 27*x)^2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3))). - Karol A. Penson and Jean-Marie Maillard, May 02 2018
Right-hand side of the binomial sum identity: Sum_{k = 0..2*n} (-1)^(n+k) * binomial(6*n, 2*n+k) * binomial(2*n, k) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!). - Peter Bala, Jan 19 2020
a(n) = 6*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/(n*(4*n - 1)*(4*n - 3)). - Neven Sajko, Jul 19 2023
From Peter Luschny, Feb 22 2024: (Start)
a(n) = 4^n*(Gamma(3*n + 1/2)/Gamma(2*n + 1/2))/Gamma(n + 1).
O.g.f.: hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z). (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(4*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(6*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((6*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((4*n+1)/2).
a(n) = [x^n] (1+4*x)^((6*n-1)/2). (End)

A262732 a(n) = (1/n!) * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!.

Original entry on oeis.org

1, 8, 126, 2240, 41990, 811008, 15967980, 318636032, 6421422150, 130395668480, 2663825039876, 54684895150080, 1127155102890908, 23311847679590400, 483537022180231320, 10054732930602762240, 209536624110664757830, 4375058594685417160704, 91505601042318156186900
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 3. See the cross references for related sequences obtained from other values of k.
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 2, b = 1. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6), A262737, A276098, A276099.
Cf. A115293.

Programs

  • Maple
    a := n -> 1/n! * (5*n)!/GAMMA(1 + 5*n/2) * GAMMA(1 + 3*n/2)/(3*n)!:
    seq(a(n), n = 0..18);
  • Mathematica
    Table[1/n!*(5 n)!/(5 n/2)!*(3 n/2)!/(3 n)!, {n, 0, 18}] (* or *)
    Table[Sum[Binomial[8 n, n - 2 k] Binomial[3 n + k - 1, k], {k, 0, Floor[n/2]}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*n,k)*binomial(4*n-k-1,n-k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 03 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A262732(n): return int((factorial(5*n)*factorial2(3*n)<Chai Wah Wu, Aug 10 2023

Formula

a(n) = Sum_{i = 0..n} binomial(5*n,i) * binomial(4*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^5/(1 - x)^3 )^n.
D-finite with recurrence a(n) = 20*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/( n*(3*n - 1)*(3*n - 3)*(3*n - 5) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 8*x + 95*x^2 + 1336*x^4 + ... has integer coefficients and equals (1/x) * (series reversion of x*(1 - x)^3/(1 + x)^5). See A262737.
a(n) ~ 2^n*3^(-3*n/2)*5^(5*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(8*n,n - 2*k) * binomial(3*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x^2) + 8*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [4/3, 3/2, 2/3], (12500/27)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^5/(1 - x)^3) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
From Karol A. Penson, Apr 26 2018: (Start)
Integral representation of a(n) as the n-th moment of a positive function w(x) on the support (0, sqrt(12500/27)):
a(n) = Integral_{x=0..sqrt(12500/27)} x^n*w(x) dx,
where w(x) = sqrt(5)*2^(3/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*hypergeom([1/10, 4/15, 3/5, 14/15], [1/5, 2/5, 4/5], 27*x^2*(1/12500))/(10*Pi*x^(4/5)) + sqrt(5)*2^(4/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*hypergeom([3/10, 7/15, 4/5, 17/15], [2/5, 3/5, 6/5], 27*x^2*(1/12500))/(50*Pi*x^(2/5)) + sqrt(5)*2^(1/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*x^(2/5)*hypergeom([7/10, 13/15, 6/5, 23/15], [4/5, 7/5, 8/5], 27*x^2*(1/12500))/(625*Pi) + 11*sqrt(5)*2^(2/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*x^(4/5)*hypergeom([9/10, 16/15, 7/5, 26/15], [6/5, 8/5, 9/5], 27*x^2*(1/12500))/(50000*Pi). The function w(x) involves four different hypergeometric functions of type 4F3. The function w(x) is singular at both ends of the support. It is the solution of the Hausdorff moment problem and as such it is unique. (End)
From Peter Bala, Sep 15 2021: (Start)
a(n) = [x^n] (1 + 4*x)^((5*n-1)/2) = 4^n*binomial((5*n-1)/2,n).
a(p) == a(1) (mod p^3) for prime p >= 5.
More generally, we conjecture that a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) for prime p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(3*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = [x^n] 1/(1-4*x)^((3*n+1)/2). (End)

A211421 Integral factorial ratio sequence: a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!).

Original entry on oeis.org

1, 14, 390, 12236, 404550, 13777764, 478273692, 16825310040, 597752648262, 21397472070260, 770557136489140, 27884297395587240, 1013127645555452700, 36935287875280348776, 1350441573221798941560, 49498889739033621986736, 1818284097150186829038150
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 4, b = 3 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420 (a = 4, b = 1).
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 6. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A262740.

Programs

  • Magma
    [Factorial(8*n)*Factorial(3*n)/(Factorial(6*n)*Factorial(4*n)*Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    #A211421
    a := n -> (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    seq(a(n), n = 0..16);
  • Mathematica
    Table[(8 n)!*(3 n)!/((6 n)!*(4 n)!*n!), {n, 0, 15}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. sum {n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(8*n,i) * binomial(7*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^8/(1 - x)^6 )^n.
a(0) = 1 and a(n) = 2*(8*n - 1)*(8*n - 3)*(8*n - 5)*(8*n - 7)/( n*(6*n - 1)*(6*n - 3)*(6*n - 5) ) * a(n-1) for n >= 1.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + 197962*x^4 + 5726364*x^5 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^6/(1 + x)^8. See A262740. (End)
a(n) ~ 2^(10*n)*27^(-n)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = (2^n/n!)*Product_{k = 3*n..4*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(6*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(8*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((8*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((6*n+1)/2).
a(n) = [x^n] (1+4*x)^((8*n-1)/2). (End)

A262733 a(n) = (1/n!) * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!.

Original entry on oeis.org

1, 12, 286, 7680, 217350, 6336512, 188296108, 5670567936, 172459427910, 5284842700800, 162922160580036, 5047099485847552, 156983503897469340, 4899363753956474880, 153349672416272587800, 4811846645261721927680, 151316978279502571401798, 4767566079229070105640960
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 5. See the cross references for related sequences obtained from other values of k.
let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 3, b = 2. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A211421 (k = 6), A262739, A276098, A276099.

Programs

  • Maple
    a := n -> 1/n! * (7*n)!/GAMMA(1 + 7*n/2) * GAMMA(1 + 5*n/2)/(5*n)!:
    seq(a(n), n = 0..18);
  • Mathematica
    Table[1/n!*(7 n)!/(7 n/2)!*(5 n/2)!/(5 n)!, {n, 0, 17}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    a(n) = sum(k=0, n, binomial(7*n,k)*binomial(6*n-k-1,n-k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 03 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A262733(n): return int((factorial(7*n)*factorial2(5*n)<Chai Wah Wu, Aug 10 2023

Formula

a(n) = [x^n] ( (1 + x)^7/(1 - x)^5 )^n.
a(n) = Sum_{i = 0..n} binomial(7*n,i) * binomial(6*n-i-1,n-i).
a(n) = 28*(7*n - 1)*(7*n - 3)*(7*n - 9)*(7*n - 11)*(7*n - 13) / ( n*(5*n - 1)*(5*n - 3)*(5*n - 5)*(5*n - 7)*(5*n - 9) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + 106442*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^5/(1 + x)^7. See A262739.
a(n) ~ 2^n*5^(-5*n/2)*7^(7*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(12*n,n - 2*k) * binomial(5*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([13/14, 11/14, 9/14, 5/14, 3/14, 1/14], [9/10, 7/10, 3/10, 1/2, 1/10], (2^2*7^7/5^5)*x^2) + 12*x*Hypergeom([10/7, 9/7, 8/7, 6/7, 5/7, 4/7], [7/5, 6/5, 4/5, 3/2, 3/5], (2^2*7^7/5^5)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^7/(1 - x)^5) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(5*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(7*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(5*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((7*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((5*n+1)/2).
a(n) = [x^n] (1+4*x)^((7*n-1)/2). (End)

A100218 Riordan array ((1-2*x)/(1-x), (1-x)).

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -1, 0, -3, 1, -1, 0, 2, -4, 1, -1, 0, 0, 5, -5, 1, -1, 0, 0, -2, 9, -6, 1, -1, 0, 0, 0, -7, 14, -7, 1, -1, 0, 0, 0, 2, -16, 20, -8, 1, -1, 0, 0, 0, 0, 9, -30, 27, -9, 1, -1, 0, 0, 0, 0, -2, 25, -50, 35, -10, 1, -1, 0, 0, 0, 0, 0, -11, 55, -77, 44, -11, 1, -1, 0, 0, 0, 0, 0, 2, -36, 105, -112, 54, -12, 1
Offset: 0

Views

Author

Paul Barry, Nov 08 2004

Keywords

Examples

			Triangle begins as:
   1;
  -1,  1;
  -1, -2,  1;
  -1,  0, -3,  1;
  -1,  0,  2, -4,  1;
  -1,  0,  0,  5, -5,   1;
  -1,  0,  0, -2,  9,  -6,   1;
  -1,  0,  0,  0, -7,  14,  -7,  1;
  -1,  0,  0,  0,  2, -16,  20, -8,  1;
  -1,  0,  0,  0,  0,   9, -30, 27, -9,  1;
		

Crossrefs

Row sums are A100219.
Matrix inverse of A100100.
Apart from signs, same as A098599.
Very similar to triangle A111125.

Programs

  • Magma
    A100218:= func< n,k | n eq 0 select 1 else (-1)^(n+k)*(Binomial(k,n-k) + Binomial(k-1,n-k-1)) >;
    [A100218(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Mar 28 2024
    
  • Mathematica
    T[0,0]:= 1; T[1,1]:= 1; T[1,0]:= -1; T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, T[n- 1,k] +T[n-1,k-1] -2*T[n-2,k-1] +T[n-3,k-1]]; Table[T[n,k], {n,0,14}, {k,0,n} ]//Flatten (* G. C. Greubel, Mar 13 2017 *)
  • SageMath
    def A100218(n,k): return 1 if n==0 else (-1)^(n+k)*(binomial(k,n-k) + binomial(k-1,n-k-1))
    flatten([[A100218(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Mar 28 2024

Formula

Sum_{k=0..n} T(n, k) = A100219(n) (row sums).
Number triangle T(n, k) = (-1)^(n-k)*(binomial(k, n-k) + binomial(k-1, n-k-1)), with T(0, 0) = 1. - Paul Barry, Nov 09 2004
T(n,k) = T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k-1) + T(n-3,k-1), T(0,0)=1, T(1,0)=-1, T(1,1)=1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Jan 09 2014
From G. C. Greubel, Mar 28 2024: (Start)
T(n, n-1) = A000027(n), n >= 1.
T(n, n-2) = -A080956(n-1), n >= 2.
T(2*n, n) = A280560(n).
T(2*n-1, n) = A157142(n-1), n >= 1.
T(2*n+1, n) = -A000007(n) = A154955(n+2).
T(3*n, n) = T(4*n, n) = A000007(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A355021(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n*A098601(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = -1 + 2*A077961(n) + A077961(n-2). (End)
From Peter Bala, Apr 28 2024: (Start)
This Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x*(1 - x) and hence belongs to the hitting time subgroup of the Riordan group (see Peart and Woan for properties of this subgroup).
T(n,k) = [x^(n-k)] (1/c(x))^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. In general the (n, k)-th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

A178300 Triangle T(n,k) = binomial(n+k-1,n) read by rows, 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 4, 10, 1, 5, 15, 35, 1, 6, 21, 56, 126, 1, 7, 28, 84, 210, 462, 1, 8, 36, 120, 330, 792, 1716, 1, 9, 45, 165, 495, 1287, 3003, 6435, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078
Offset: 1

Views

Author

Alford Arnold, May 24 2010

Keywords

Comments

Obtained from A176992 by reversing entries in each row, from A092392 by removing the left column and reversing entries in each row, or from A100100 by removing the first two columns and reversing entries in each row.
Also T(n,k) = count of degree k monomials in the Monomial symmetric polynomials m(mu,k) summed over all partitions mu of n.
T(n,k) is the number of ways to put n indistinguishable balls into k distinguishable boxes. - Dennis P. Walsh, Apr 11 2012
T(n,k) is the number of compositions of n into k parts if zeros are allowed as parts. - L. Edson Jeffery, Jul 23 2014
T(n,k) is the number of compositions (ordered partitions) of n+k into exactly k parts. - Juergen Will, Jan 23 2016
T(n,k) is the number of binary strings with exactly n zeros and k-1 ones. - Dennis P. Walsh, Apr 09 2016
T(n,k) is the number of functions f:[k-1]->[n+1] that are nondecreasing. There is a unique correspondence between such a function and a binary string with exactly n zeros and k-1 ones. Given a string, let the corresponding function f be defined by f(i)=1 + (the number of zeros in the string that precede the i-th one in the string) for i=1,..,k-1. - Dennis P. Walsh, Apr 09 2016

Examples

			Triangle begins
  1;
  1,    3;
  1,    4,   10;
  1,    5,   15,   35;
  1,    6,   21,   56,  126;
  1,    7,   28,   84,  210,  462;
  1,    8,   36,  120,  330,  792, 1716;
T(3,3)=10 since there are 10 ways to put 3 identical balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012
For example, T(3,3)=10 since there are ten functions f:[2]->[4] that are nondecreasing, namely, <f(1),f(2)> = <1,1> or <1,2> or <1,3> or <1,4> or <2,2> or <2,3> or <2,4> or <3,3> or <3,4> or <4,4>. - _Dennis P. Walsh_, Apr 09 2016
		

Crossrefs

Programs

  • Magma
    // As triangle
    [[Binomial(n+k-1,n): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 24 2016
  • Maple
    seq(seq(binomial(n+k-1,n),k=1..n),n=1..15); # Dennis P. Walsh, Apr 11 2012
  • Mathematica
    m[par_?PartitionQ, v_] := Block[{le = Length[par], it }, If[le > v, Return[0]]; it = Permutations[PadRight[par, v]]; Tr[ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ it, {1}]]];
    Table[Tr[(m[#, k] & /@ Partitions[l]) /. Subscript[x, ] -> 1], {l, 11}, {k, l}](* _Wouter Meeussen, Mar 11 2012 *)
    Quiet[Needs["Combinatorica`"], All]; Grid[Table[Length[Combinatorica`Compositions[n, k]], {n, 10}, {k, n}]] (* L. Edson Jeffery, Jul 24 2014 *)
    t[n_, k_] := Binomial[n + k - 1, n]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Jul 24 2014 *)

Formula

T(n,k) = A046899(n,k-1) = A038675(n,k)/A008292(n,k).
T(n,1) = 1.
T(n,2) = n+1.
T(n,3) = A000217(n+1).
T(n,4) = A000292(n+1).
T(n,5) = A000332(n+4).
T(n,n) = A001700(n-1) = A088218(n). - Dennis P. Walsh, Apr 10 2012

A307496 Expansion of Product_{k>=1} (1 + ((1 - sqrt(1 - 4*x))/2)^k).

Original entry on oeis.org

1, 1, 2, 6, 18, 57, 187, 629, 2156, 7502, 26427, 94053, 337653, 1221260, 4445892, 16277089, 59893052, 221370725, 821499759, 3059620076, 11432831745, 42848889316, 161032785057, 606710026659, 2291156662259, 8670805904186, 32879697168622, 124910667052026, 475357627716839, 1811931609379926
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000009 (number of partitions into distinct parts).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting A000009 in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
1 2 2
2 4 6 6
2 6 12 18 18
3 9 21 39 57 57
...
Alternatively, the sequence can be obtained by multiplying A000009 by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + ((1 - Sqrt[1 - 4 x])/2)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Product[1/(1 - ((1 - Sqrt[1 - 4 x])/2)^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k PartitionsQ[k], {k, n}], {n, 29}]]

Formula

G.f.: Product_{k>=1} 1/(1 - ((1 - sqrt(1 - 4*x))/2)^(2*k-1)).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000009.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*A000009(k) for n > 0.
a(n) ~ c * 4^n / n^(3/2), where c = 1/sqrt(Pi) * Sum_{k>=0} k*A000009(k)/2^(k+1) = 1.12333545392999500455446757207126193339498222754079045166328600452997969... - Vaclav Kotesovec, Jan 28 2020, extended Aug 01 2022
Showing 1-10 of 21 results. Next