cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A262739 O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).

Original entry on oeis.org

1, 12, 215, 4564, 106442, 2635704, 68031147, 1810302340, 49308457334, 1368019979976, 38525145673126, 1098380420669000, 31641932951483220, 919622628946689648, 26931762975278938035, 793967020231145502564, 23543663463050594677310, 701763102761640853890600, 21014048069544552257072530, 631868353403527700756671320, 19070677448561228207945931276
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) when k = 5. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A262733, A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262738 (k = 4), A262740 (k = 6).

Programs

  • Maple
    A262739 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(7*k)!/GAMMA(7*k/2 + 1)*GAMMA(5*k/2 + 1)/(5*k)!*A262739(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262739(n), n = 0..20);
  • PARI
    a(n) = sum(k=0, n, binomial(7*(n+1),k)*binomial(6*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(7*n,i)*binomial(6*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A262733.
O.g.f. is the series reversion of x*(1 - x)^5/(1 + x)^7,
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k! * (7*k)!/(7*k/2)! * (5*k/2)!/(5*k)!*a(n-k).

A001448 a(n) = binomial(4n,2n) or (4*n)!/((2*n)!*(2*n)!).

Original entry on oeis.org

1, 6, 70, 924, 12870, 184756, 2704156, 40116600, 601080390, 9075135300, 137846528820, 2104098963720, 32247603683100, 495918532948104, 7648690600760440, 118264581564861424, 1832624140942590534, 28453041475240576740, 442512540276836779204, 6892620648693261354600
Offset: 0

Views

Author

Keywords

Comments

Corollary 8 in Chapman et alia says: "For n>=1, there are binomial(4n,2n) binary sequences of length 4n+1 with the property that for all j, the j-th occurrence of 10 appears in positions 4j+1 and 4j+2 or later (if it exists at all)." - Peter Luschny, Nov 21 2011
Sequence terms are given by [x^n] ( (1 + x)^(k+2)/(1 - x)^k )^n for k = 2. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

Examples

			a(n) = (1/Pi)*Integral_{x=0..4} x^(2n)/sqrt(4-(x-2)^2) dx. - _Paul Barry_, Sep 17 2010
G.f. = 1 + 6*x + 70*x^2 + 924*x^3 + 12870*x^4 + 184756*x^5 + 2704156*x^6 + ...
		

Crossrefs

Bisection of A000984. Cf. A002458, A066357, A000984 (k = 0), A091527 (k = 1), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6).

Programs

  • Magma
    [Factorial(4*n)/(Factorial(2*n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Sep 13 2011
    
  • Maple
    A001448 := n-> binomial(4*n,2*n) ;
  • Mathematica
    Table[Binomial[4n,2n],{n,0,20}] (* Harvey P. Dale, Apr 26 2014 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-2 n, -2 n}, {1}, 1]]; (* Michael Somos, Oct 22 2014 *)
  • PARI
    a(n)=binomial(4*n,2*n) \\ Charles R Greathouse IV, Sep 13 2011
    
  • Python
    from math import comb
    def A001448(n): return comb(n<<2,n<<1) # Chai Wah Wu, Aug 10 2023

Formula

a(n) = A000984(2*n).
Using Stirling's formula in sequence A000142 it is easy to get the asymptotic expression a(n) ~ 16^n / sqrt(2 * Pi * n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
From Wolfdieter Lang, Dec 13 2001: (Start)
a(n) = 2*A001700(2*n-1) = (2*n+1)*C(2*n), n >= 1, C(n) := A000108(n) (Catalan).
G.f.: (1-y*((1+4*y)*c(y)-(1-4*y)*c(-y)))/(1-(4*y)^2) with y^2=x, c(y) = g.f. for A000108 (Catalan). (End)
a(n) ~ 2^(-1/2)*Pi^(-1/2)*n^(-1/2)*2^(4*n)*{1 - (1/16)*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
a(n) = (1/Pi)*Integral_{x=-2..2} (2+x)^(2*n)/sqrt((2-x)*(2+x)) dx. Peter Luschny, Sep 12 2011
G.f.: (1/2) * (1/sqrt(1+4*sqrt(x)) + 1/sqrt(1-4*sqrt(x))). - Mark van Hoeij, Oct 25 2011
Sum_{n>=1} 1/a(n) = 16/15 + Pi*sqrt(3)/27 - 2*sqrt(5)*log(phi)/25, [T. Trif, Fib Quart 38 (2000) 79] with phi=A001622. - R. J. Mathar, Jul 18 2012
D-finite with recurrence n*(2*n-1)*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. - R. J. Mathar, Dec 02 2012
G.f.: sqrt((1 + sqrt(1-16*x))/(2*(1-16*x))) = 1 + 6*x/(G(0)-6*x), where G(k) = 2*x*(4*k+3)*(4*k+1) + (2*k+1)*(k+1) - 2*x*(k+1)*(2*k+1)*(4*k+5)*(4*k+7)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2013
a(n) = hypergeom([1-2*n,-2*n],[2],1)*(2*n+1). - Peter Luschny, Sep 22 2014
From Michael Somos, Oct 22 2014: (Start)
0 = a(n)*(+65536*a(n+2) - 16896*a(n+3) + 858*a(n+4)) + a(n+1)*(-3584*a(n+2) + 1176*a(n+3) - 66*a(n+4)) + a(n+2)*(+14*a(n+2) - 14*a(n+3) + a(n+4)) for all n in Z.
0 = a(n)^2*(+196608*a(n+1)^2 - 40960*a(n+1)*a(n+2) + 2100*a(n+2)^2) + a(n)*a(n+1)*(-12288*a(n+1)^2 + 2840*a(n+1)*a(n+2) - 160*a(n+2)^2) + a(n+1)^2*(+180*a(n+1)^2 - 48*a(n+1)*a(n+2) + 3*a(n+2)^2) for all n in Z. (End)
a(n) = [x^n] ( (1 + x)^4/(1 - x)^2 )^n; exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 6*x + 53*x^2 + 554*x^3 + ... = Sum_{n >= 0} A066357(n+1)*x^n. - Peter Bala, Jun 23 2015
a(n) = Sum_{i = 0..n} binomial(4*n,i) * binomial(3*n-i-1,n-i). - Peter Bala, Sep 29 2015
a(n) = A000984(n)*Product_{j=0..n} (2^j/(j!*(2*j-1)!!))*A068424(n, j)^2, with A068424 the falling factorial. See (5.4) in Podestá link. - Michel Marcus, Mar 31 2016
a(n) = GegenbauerC(2*n, -2*n, -1). - Peter Luschny, May 07 2016
a(n) = [x^n] 1/sqrt(1 - 4*x)^(2*n+1). - Ilya Gutkovskiy, Oct 10 2017
a(n) is the n-th moment of the positive weight function w(x) on (0,16), i.e. a(n) = Integral_{x=0..16} x^n*w(x) dx, n = 0,1,..., where w(x) = (1/(2*Pi))/(sqrt(4 - sqrt(x))*x^(3/4)). The function w(x) is the solution of the Hausdorff moment problem and is unique. - Karol A. Penson, Mar 06 2018
a(n) = (16^n*(Beta(2*n - 1/2, 1/2) - Beta(2*n - 1/2, 3/2)))/Pi. - Peter Luschny, Mar 06 2018
E.g.f.: hypergeom([1/4,3/4],[1/2,1],16*x). - Karol A. Penson, Mar 08 2018
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k.
a(n) = [(x*y)^(2*n)] (1 + x + y)^(4*n). (End)
a(n) = (2^n/n!)*Product_{k = n..2*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = Sum_{k = 0..2*n} binomial(2*n+k-1, k). - Peter Bala, Nov 02 2024
Sum_{n>=0} (-1)^n/a(n) = 16/17 + 4*sqrt(34)*(sqrt(17)-2)*arctan(sqrt(2/(sqrt(17)-1)))/(289*sqrt(sqrt(17)-1)) + 2*sqrt(34)*(sqrt(17)+2)*log((sqrt(sqrt(17)+1)-sqrt(2))/(sqrt(sqrt(17)+1)+sqrt(2)))/(289*sqrt(sqrt(17)+1)) (Sprugnoli, 2006, Theorem 3.8, p. 11; Piezas, 2012). - Amiram Eldar, Nov 03 2024
For n >= 1, a(n) = Sum_{k=1}^n a(n-k) * A337350(n) = Sum_{k=1}^n a(n-k) * a(k) * (8k + 1) / (8k^2 + 2k - 1). For proof, see the Quy Nhan link. - Lucas A. Brown, Jun 26 2025
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(2*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((4*n-1)/2,n).
a(n) = [x^n] (1+4*x)^((4*n-1)/2). (End)

A276098 a(n) = (7*n)!*(3/2*n)!/((7*n/2)!*(3*n)!*(2*n)!).

Original entry on oeis.org

1, 48, 6006, 860160, 130378950, 20392706048, 3254013513660, 526470648692736, 86047769258554950, 14173603389190963200, 2349023203055914140756, 391249767795614684282880, 65434374898388743460014620, 10981406991821583404677201920
Offset: 0

Views

Author

Peter Bala, Aug 22 2016

Keywords

Comments

Let a > b be nonnegative integers. The ratio of factorials (2*a*n)!*(b*n)!/( (a*n)!*(2*b*n)!*((a - b)*n)! ) is known to be an integer for n >= 0 (see, for example, Bober, Theorem 1.1). We have the companion result: Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 3, b = 1. Other cases include A091496 (a = 2, b = 0), A091527 (a = 1, b = 0), A262732 (a = 2, b = 1), A262733 (a = 3, b = 2) and A276099 (a = 4, b = 2).

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    seq(simplify((7*n)!*(3/2*n)!/((7*n/2)!*(3*n)!*(2*n)!)), n = 0..20);
  • Python
    from math import factorial
    from sympy import factorial2
    def A276098(n): return int((factorial(7*n)*factorial2(3*n)<<(n<<1))//factorial2(7*n)//factorial(3*n)//factorial(n<<1)) # Chai Wah Wu, Aug 10 2023

Formula

a(n) = Sum_{k = 0..2*n} binomial(7*n, 2*n - k)*binomial(3*n + k - 1, k).
a(n) = Sum_{k = 0..n} binomial(10*n, 2*n - 2*k)*binomial(3*n + k - 1, k).
Recurrence: a(n) = 28*(7*n - 1)*(7*n - 3)*(7*n - 5)*(7*n - 9)*(7*n - 11)*(7*n - 13)/(3*n*(n - 1)*(2*n - 1)*(2*n - 3)*(3*n - 1)*(3*n - 5)) * a(n-2).
a(n) ~ 1/sqrt(4*Pi*n) * (7^7/3^3)^(n/2).
O.g.f. A(x) = Hypergeom([13/14, 11/14, 9/14, 5/14, 3/14, 1/14], [5/6, 3/4, 1/2, 1/4, 1/6], (7^7/3^3)*x^2) + 48*x*Hypergeom([10/7, 9/7, 8/7, 6/7, 5/7, 4/7], [5/4, 4/3, 3/2, 3/4, 2/3], (7^7/3^3)*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^7/(1 - x)^3.
It follows that the o.g.f. A(x) equals the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*sqrt((1 - x)^3/(1 + x)^7) ) and put G(x) = 1 + x*d/dx(log(F(x))). Then A(x^2) = (G(x) + G(-x))/2.

A091527 a(n) = ((3*n)!/n!^2)*(Gamma(1+n/2)/Gamma(1+3n/2)).

Original entry on oeis.org

1, 4, 30, 256, 2310, 21504, 204204, 1966080, 19122246, 187432960, 1848483780, 18320719872, 182327718300, 1820797698048, 18236779032600, 183120225632256, 1842826521244230, 18581317012684800, 187679234340049620, 1898554215471513600, 19232182592635611060
Offset: 0

Views

Author

Michael Somos, Jan 18 2004

Keywords

Comments

Sequence terms are given by [x^n] ( (1 + x)^(k+2)/(1 - x)^k )^n for k = 1. See the crossreferences for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 1, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A061162(n) = a(2n), A007297, A000984 (k = 0), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6), A276098, A276099.

Programs

  • Maple
    a := n -> 4^n * `if`(n<2, 1, (2*(n+1)*binomial((3*n-1)/2, n + 1))/(n-1)):
    seq(a(n), n=0..18); # Peter Luschny, Feb 03 2020
  • Mathematica
    Table[((3 n)!/n!^2) Gamma[1 + n/2]/Gamma[1 + 3 n/2], {n, 0, 18}] (* Michael De Vlieger, Oct 02 2015 *)
    Table[4^n Sum[Binomial[k - 1 + (n - 1)/2, k], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
  • Maxima
    B(x):=(-1/3+(2/3)*sqrt(1+9*x)*sin((1/3)*asin((2+27*x+54*x^2)/2/(1+9*x)^(3/2))))/x-1;
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 02 2015 */
    
  • PARI
    a(n)=4^n*sum(i=0,n,binomial(i-1+(n-1)/2,i))
    
  • PARI
    vector(30, n, sum(k=0, n, binomial(3*n-3, k)*binomial(2*n-k-3, n-k-1))) \\ Altug Alkan, Oct 04 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091527(n): return int((factorial(3*n)*factorial2(n)<Chai Wah Wu, Aug 10 2023

Formula

D-finite with recurrence n*(n - 1)*a(n) = 12*(3*n - 1)*(3*n - 5)*a(n-2).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(3*n,i) * binomial(2*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^3/(1 - x) )^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + 9192*x^5 + ... is the o.g.f. for A007297 (but with an offset of 0). (End)
a(n) = (n+1)*A078531(n). [Barry, JIS (2011)]
G.f.: x*B'(x)/B(x), where x*B(x)+1 is g.f. of A007297. - Vladimir Kruchinin, Oct 02 2015
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(4*n,n-2*k)*binomial(n+k-1,k).
O.g.f.: A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x^2) + 4*x*Hypergeom([4/3, 2/3], [3/2], 108*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^3/(1 - x)) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
a(n) ~ 2^n*3^(3*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Aug 22 2016
a(n) = 4^n*2*(n+1)*binomial((3*n-1)/2, n+1)/(n-1) for n >= 2. - Peter Luschny, Feb 03 2020
From Peter Bala, Mar 04 2022: (Start)
The o.g.f. A(x) satisfies the algebraic equation (1 - 108*x^2)*A(x)^3 - A(x) = 8*x. Cf. A244039.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for primes p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((3*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((n+1)/2).
a(n) = [x^n] (1+4*x)^((3*n-1)/2). (End)

A211419 a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!).

Original entry on oeis.org

1, 10, 198, 4420, 104006, 2521260, 62300700, 1560167752, 39457579590, 1005490725148, 25776935824948, 664048851069240, 17175945353271068, 445775181599116600, 11602978540817349240, 302767701121286251920, 7917664916276259668550, 207452338901630123085180
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 3, b = 2 of the following result (see Bober, Theorem 1.2): Let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211420 (a = 4, b = 1), A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1).
This is the case m = 3n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
Sequence terms are given by the coefficient of x^n in the expansion of ((1 + x)^(k+2)/(1 - x)^k)^n when k = 4. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.

Crossrefs

Cf. A000984 (k=0), A091527 (k=1), A001448 (k=2), A262732 (k=3), A262733 (k=5), A211421 (k=6), A262738.

Programs

  • Magma
    [Factorial(6*n) * Factorial(2*n) / (Factorial(4*n) * Factorial(3*n) * Factorial(n)): n in [0..20]]; // Vincenzo Librandi, May 03 2018
  • Maple
    A211419 := n-> (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!):
    seq(A211419(n), n=0..20);
    # Using the o.g.f. from Karol A. Penson and Jean-Marie Maillard:
    u := 27*x-1: c := (u^3*((3*x*u)^(1/2)*(12+81*x)-u^2+216*x-7))^(1/3):
    gf := ((c^2-2*c*u+27*u*(7-81*x)*x-4*u)/(6*c*u^2))^(1/2):
    ser := series(gf, x, 8); # Peter Luschny, May 03 2018
    ogf := hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z): ser := series(ogf, z, 20):
    seq(coeff(ser, z, n), n = 0..17);  # Peter Luschny, Feb 22 2024
  • Mathematica
    Table[(6 n)!*(2 n)!/((4 n)!*(3 n)!*n!), {n, 0, 16}] (* Michael De Vlieger, Oct 04 2015 *)
    CoefficientList[Series[Sqrt[(4 + 7290 x^2 - 59049 x^3 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3) + (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(2/3) - 27 x (11 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3)))/(6 (1 - 27 x)^2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3))],{x,0,16}],x] (* Karol A. Penson and Jean-Marie Maillard, May 02 2018 *)
  • PARI
    a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(6*n, i) * binomial(5*n-i-1, n-i).
a(n) = [x^n] ( (1 + x)^6/(1 - x)^4 )^n.
O.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + 51002*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^4/ (1 + x)^6. See A262738. (End)
a(n) ~ 27^n/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
O.g.f.: sqrt((4 + 7290*x^2 - 59049*x^3 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3) + (8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(2/3) - 27*x*(11 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3)))/(6*(1 - 27*x)^2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3))). - Karol A. Penson and Jean-Marie Maillard, May 02 2018
Right-hand side of the binomial sum identity: Sum_{k = 0..2*n} (-1)^(n+k) * binomial(6*n, 2*n+k) * binomial(2*n, k) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!). - Peter Bala, Jan 19 2020
a(n) = 6*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/(n*(4*n - 1)*(4*n - 3)). - Neven Sajko, Jul 19 2023
From Peter Luschny, Feb 22 2024: (Start)
a(n) = 4^n*(Gamma(3*n + 1/2)/Gamma(2*n + 1/2))/Gamma(n + 1).
O.g.f.: hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z). (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(4*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(6*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((6*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((4*n+1)/2).
a(n) = [x^n] (1+4*x)^((6*n-1)/2). (End)

A262732 a(n) = (1/n!) * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!.

Original entry on oeis.org

1, 8, 126, 2240, 41990, 811008, 15967980, 318636032, 6421422150, 130395668480, 2663825039876, 54684895150080, 1127155102890908, 23311847679590400, 483537022180231320, 10054732930602762240, 209536624110664757830, 4375058594685417160704, 91505601042318156186900
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 3. See the cross references for related sequences obtained from other values of k.
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 2, b = 1. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6), A262737, A276098, A276099.
Cf. A115293.

Programs

  • Maple
    a := n -> 1/n! * (5*n)!/GAMMA(1 + 5*n/2) * GAMMA(1 + 3*n/2)/(3*n)!:
    seq(a(n), n = 0..18);
  • Mathematica
    Table[1/n!*(5 n)!/(5 n/2)!*(3 n/2)!/(3 n)!, {n, 0, 18}] (* or *)
    Table[Sum[Binomial[8 n, n - 2 k] Binomial[3 n + k - 1, k], {k, 0, Floor[n/2]}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*n,k)*binomial(4*n-k-1,n-k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 03 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A262732(n): return int((factorial(5*n)*factorial2(3*n)<Chai Wah Wu, Aug 10 2023

Formula

a(n) = Sum_{i = 0..n} binomial(5*n,i) * binomial(4*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^5/(1 - x)^3 )^n.
D-finite with recurrence a(n) = 20*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/( n*(3*n - 1)*(3*n - 3)*(3*n - 5) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 8*x + 95*x^2 + 1336*x^4 + ... has integer coefficients and equals (1/x) * (series reversion of x*(1 - x)^3/(1 + x)^5). See A262737.
a(n) ~ 2^n*3^(-3*n/2)*5^(5*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(8*n,n - 2*k) * binomial(3*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x^2) + 8*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [4/3, 3/2, 2/3], (12500/27)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^5/(1 - x)^3) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
From Karol A. Penson, Apr 26 2018: (Start)
Integral representation of a(n) as the n-th moment of a positive function w(x) on the support (0, sqrt(12500/27)):
a(n) = Integral_{x=0..sqrt(12500/27)} x^n*w(x) dx,
where w(x) = sqrt(5)*2^(3/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*hypergeom([1/10, 4/15, 3/5, 14/15], [1/5, 2/5, 4/5], 27*x^2*(1/12500))/(10*Pi*x^(4/5)) + sqrt(5)*2^(4/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*hypergeom([3/10, 7/15, 4/5, 17/15], [2/5, 3/5, 6/5], 27*x^2*(1/12500))/(50*Pi*x^(2/5)) + sqrt(5)*2^(1/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*x^(2/5)*hypergeom([7/10, 13/15, 6/5, 23/15], [4/5, 7/5, 8/5], 27*x^2*(1/12500))/(625*Pi) + 11*sqrt(5)*2^(2/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*x^(4/5)*hypergeom([9/10, 16/15, 7/5, 26/15], [6/5, 8/5, 9/5], 27*x^2*(1/12500))/(50000*Pi). The function w(x) involves four different hypergeometric functions of type 4F3. The function w(x) is singular at both ends of the support. It is the solution of the Hausdorff moment problem and as such it is unique. (End)
From Peter Bala, Sep 15 2021: (Start)
a(n) = [x^n] (1 + 4*x)^((5*n-1)/2) = 4^n*binomial((5*n-1)/2,n).
a(p) == a(1) (mod p^3) for prime p >= 5.
More generally, we conjecture that a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) for prime p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(3*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = [x^n] 1/(1-4*x)^((3*n+1)/2). (End)

A211421 Integral factorial ratio sequence: a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!).

Original entry on oeis.org

1, 14, 390, 12236, 404550, 13777764, 478273692, 16825310040, 597752648262, 21397472070260, 770557136489140, 27884297395587240, 1013127645555452700, 36935287875280348776, 1350441573221798941560, 49498889739033621986736, 1818284097150186829038150
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 4, b = 3 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420 (a = 4, b = 1).
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 6. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A262740.

Programs

  • Magma
    [Factorial(8*n)*Factorial(3*n)/(Factorial(6*n)*Factorial(4*n)*Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    #A211421
    a := n -> (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    seq(a(n), n = 0..16);
  • Mathematica
    Table[(8 n)!*(3 n)!/((6 n)!*(4 n)!*n!), {n, 0, 15}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. sum {n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(8*n,i) * binomial(7*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^8/(1 - x)^6 )^n.
a(0) = 1 and a(n) = 2*(8*n - 1)*(8*n - 3)*(8*n - 5)*(8*n - 7)/( n*(6*n - 1)*(6*n - 3)*(6*n - 5) ) * a(n-1) for n >= 1.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + 197962*x^4 + 5726364*x^5 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^6/(1 + x)^8. See A262740. (End)
a(n) ~ 2^(10*n)*27^(-n)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = (2^n/n!)*Product_{k = 3*n..4*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(6*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(8*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((8*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((6*n+1)/2).
a(n) = [x^n] (1+4*x)^((8*n-1)/2). (End)

A211417 Integral factorial ratio sequence: a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!).

Original entry on oeis.org

1, 77636318760, 53837289804317953893960, 43880754270176401422739454033276880, 38113558705192522309151157825210540422513019720, 34255316578084325260482016910137568877961925210286281393760
Offset: 0

Views

Author

Peter Bala, Apr 11 2012

Keywords

Comments

The integrality of this sequence can be used to prove Chebyshev's estimate C(1)*x/log(x) <= #{primes <= x} <= C(2)*x/log(x), for x sufficiently large; the constant C(1) = 0.921292... and C(2) = 1.105550.... Chebyshev's approach used the related step function floor(x) -floor(x/2) -floor(x/3) -floor(x/5) +floor(x/30). See A182067.
This sequence is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin.
The o.g.f. sum {n >= 0} a(n)*z^n is a generalized hypergeometric series of type 8F7 (see Bober, Table 2, Entry 31) and is an algebraic function of degree 483840 over the field of rational functions Q(z) (see Rodriguez-Villegas). Bober remarks that the monodromy group of the differential equation satisfied by the o.g.f. is W(E_8), the Weyl group of the E_8 root system.
See the Bala link for the proof that a(n), n = 0,1,2..., is an integer.
Congruences: a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(30*n,15*n)*C(15*n,5*n)/C(6*n,n) and use equation 39 in Mestrovic, p. 12). More generally, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. Cf. A295431. - Peter Bala, Jan 24 2020

Crossrefs

Programs

  • Magma
    [Factorial(30*n)*Factorial(n)/(Factorial(15*n)*Factorial(10*n)*Factorial(6*n)): n in [0..10]]; // Vincenzo Librandi, Oct 03 2015
  • Mathematica
    Table[(30 n)!*n!/((15 n)!*(10 n)!*(6 n)!), {n, 0, 5}] (* Michael De Vlieger, Oct 02 2015 *)
  • PARI
    a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!);
    vector(10, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

a(n) ~ 2^(14*n-1) * 3^(9*n-1/2) * 5^(5*n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 30 2016

A276099 a(n) = (9*n)!*(5/2*n)!/((9*n/2)!*(5*n)!*(2*n)!).

Original entry on oeis.org

1, 96, 24310, 7028736, 2149374150, 678057476096, 218191487357116, 71184392021606400, 23459604526110889542, 7791432263086689484800, 2603575153867220801823060, 874329826463740757819785216, 294822072977645830504963830300
Offset: 0

Views

Author

Peter Bala, Aug 22 2016

Keywords

Comments

Let a > b be nonnegative integers. The ratio of factorials (2*a*n)!*(b*n)!/( (a*n)!*(2*b*n)!*((a - b)*n)! ) is known to be an integer for all integer n >= 0 (see, for example, Bober, Theorem 1.1). We have the companion result: Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 4, b = 2. Other cases include A091496 (a = 2, b = 0), A091527 (a = 1, b = 0), A262732 (a = 2, b = 1), A262733 (a = 3, b = 2) and A276098 (a = 3, b = 1).

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    seq(simplify((9*n)!*(5/2*n)!/((9*n/2)!*(5*n)!*(2*n)!)), n = 0..20);
  • Mathematica
    Table[((9n)!(5/2 n)!)/((9 n/2)!(5n)!(2n)!),{n,0,15}] (* Harvey P. Dale, May 21 2024 *)
  • Python
    from math import factorial
    from sympy import factorial2
    def A276099(n): return int((factorial(9*n)*factorial2(5*n)<<(n<<1))//factorial2(9*n)//factorial(5*n)//factorial(n<<1)) # Chai Wah Wu, Aug 10 2023

Formula

a(n) = Sum_{k = 0..2*n} binomial(9*n, k)*binomial(7*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(14*n, 2*n - 2*k)*binomial(5*n + k - 1, k).
a(n) ~ 1/sqrt(4*Pi*n) * (3^18/5^5)^(n/2).
O.g.f. A(x) = Hypergeom([17/18, 13/18, 11/18, 7/18, 5/18, 1/18, 5/6, 1/6], [9/10, 7/10, 3/10, 1/10, 3/4, 1/4, 1/2], (3^18/5^5)*x^2) + 96*x*Hypergeom([13/9, 11/9, 10/9, 8/9, 7/9, 5/9, 4/3, 2/3], [7/5, 6/5, 4/5, 3/5, 5/4, 3/4, 3/2], (3^18/5^5)*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^9/(1 - x)^5.
It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*sqrt((1 - x)^5/(1 + x)^9) ) and put G(x) = 1 + x*d/dx(log(F(x))). Then A(x^2) = (G(x) + G(-x))/2.

A091496 a(n) = ((5*n)!/(n!*(2*n)!))*(Gamma(1+n/2)/Gamma(1+5*n/2)).

Original entry on oeis.org

1, 16, 630, 28672, 1385670, 69206016, 3528923580, 182536110080, 9540949030470, 502682972323840, 26651569523959380, 1420217179365703680, 75998432812419471900, 4081125953526124511232, 219813190240007470094520, 11869871068877664049692672, 642409325786050322446410310
Offset: 0

Views

Author

Michael Somos, Jan 15 2004

Keywords

Comments

Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 2, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Mathematica
    Table[((5 n)!/(n! (2 n)!)) (Gamma[1 + n/2]/Gamma[1 + 5 n/2]), {n, 0, 14}] (* or *)
    Table[Sum[Binomial[6 n, 2 n - 2 k] Binomial[n + k - 1, k], {k, 0, n}], {n, 0, 14}] (* or *)
    Table[Sum[Binomial[5 n, k] Binomial[3 n - k - 1, 2 n - k], {k, 0, 2 n}], {n, 0, 14}] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    a(n)=16^n*sum(i=0,2*n,binomial(i-1+(n-1)/2,i))
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091496(n): return int((factorial(5*n)*factorial2(n)<<(n<<1))//(factorial(n)*factorial(n<<1)*factorial2(5*n))) # Chai Wah Wu, Aug 10 2023

Formula

n*(n-1)*(2*n-1)*(2*n-3)*a(n) = 20*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2).
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..2*n} binomial(5*n, k)*binomial(3*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(6*n, 2*n - 2*k)*binomial(n + k - 1, k).
a(n) ~ 5^(5*n/2)/(2*sqrt(Pi*n)).
O.g.f. A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [3/4, 1/2, 1/4], 3125*x^2) + 16*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [5/4, 3/2, 3/4], 3125*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^5/(1 - x). Cf. A061162 and A262732.
It follows that the o.g.f. for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 16*x + 443*x^2 + 15280*x^3 + 591998*x^4 + 24635360*x^5 + 1075884051*x^6 + ... has integer coefficients.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)/(1 + x)^5) ) and put G(x) = 1 + x*d/dx(log(F(x))). Then A(x) satisfies A(x^2) = (G(x) + G(-x))/2. (End)
O.g.f. denoted by h(x), satisfies algebraic equation of order 10: -800000*x^4 + 81*x^2 - 25000*x^3*h(x) - 25*x^2*(1400000*x^2 - 123)*h(x)^2 + 8*x*(178125*x^2 - 32)*h(x)^3 + (-31250000*x^4 + 22500*x^2 + 4)*h(x)^4 + 32*x*(137500*x^2 - 19)*(3125*x^2 - 1)*h(x)^5 + 12*(3125*x^2 - 1)*(3125*x^2 + 3)*h(x)^6 + 800*x*(3125*x^2 - 1)^2*h(x)^7 + 96*(3125*x^2 - 1)^2*h(x)^8 + 64*(3125*x^2 - 1)^3*h(x)^10 = 0. - Karol A. Penson, Apr 30 2025
Showing 1-10 of 12 results. Next