cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A262733 a(n) = (1/n!) * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!.

Original entry on oeis.org

1, 12, 286, 7680, 217350, 6336512, 188296108, 5670567936, 172459427910, 5284842700800, 162922160580036, 5047099485847552, 156983503897469340, 4899363753956474880, 153349672416272587800, 4811846645261721927680, 151316978279502571401798, 4767566079229070105640960
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 5. See the cross references for related sequences obtained from other values of k.
let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 3, b = 2. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A211421 (k = 6), A262739, A276098, A276099.

Programs

  • Maple
    a := n -> 1/n! * (7*n)!/GAMMA(1 + 7*n/2) * GAMMA(1 + 5*n/2)/(5*n)!:
    seq(a(n), n = 0..18);
  • Mathematica
    Table[1/n!*(7 n)!/(7 n/2)!*(5 n/2)!/(5 n)!, {n, 0, 17}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    a(n) = sum(k=0, n, binomial(7*n,k)*binomial(6*n-k-1,n-k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 03 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A262733(n): return int((factorial(7*n)*factorial2(5*n)<Chai Wah Wu, Aug 10 2023

Formula

a(n) = [x^n] ( (1 + x)^7/(1 - x)^5 )^n.
a(n) = Sum_{i = 0..n} binomial(7*n,i) * binomial(6*n-i-1,n-i).
a(n) = 28*(7*n - 1)*(7*n - 3)*(7*n - 9)*(7*n - 11)*(7*n - 13) / ( n*(5*n - 1)*(5*n - 3)*(5*n - 5)*(5*n - 7)*(5*n - 9) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + 106442*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^5/(1 + x)^7. See A262739.
a(n) ~ 2^n*5^(-5*n/2)*7^(7*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(12*n,n - 2*k) * binomial(5*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([13/14, 11/14, 9/14, 5/14, 3/14, 1/14], [9/10, 7/10, 3/10, 1/2, 1/10], (2^2*7^7/5^5)*x^2) + 12*x*Hypergeom([10/7, 9/7, 8/7, 6/7, 5/7, 4/7], [7/5, 6/5, 4/5, 3/2, 3/5], (2^2*7^7/5^5)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^7/(1 - x)^5) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(5*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(7*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(5*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((7*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((5*n+1)/2).
a(n) = [x^n] (1+4*x)^((7*n-1)/2). (End)

A262737 O.g.f. exp( Sum_{n >= 1} A262732(n)*x^n/n ).

Original entry on oeis.org

1, 8, 95, 1336, 20642, 338640, 5791291, 102108760, 1842857390, 33879118384, 632210693270, 11944142806064, 228010741228740, 4391334026631072, 85221618348230355, 1664901954576830360, 32716286416687895862, 646228961799752926320, 12823701194384778672322
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) for k = 3. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262738 (k = 4), A262739 (k = 5), A262740 (k = 6), A262732.

Programs

  • Maple
    A262737 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(5*k)!/GAMMA(5*k/2 + 1)*GAMMA(3*k/2 + 1)/(3*k)!*A262737(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262737(n), n = 0 .. 20);
  • PARI
    a(n) = sum(k=0, n, binomial(5*(n+1),k)*binomial(4*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(5*n,i)*binomial(4*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!*x^n/n ) = 1 + 8*x + 195*x^2 + 1336*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A262732.
O.g.f. is the series reversion of x*(1 - x)^3/(1 + x)^5.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k!*(5*k)!/GAMMA(5*k/2+1)*GAMMA(3*k/2+1)/(3*k)! * a(n-k).

A262738 O.g.f. exp( Sum_{n >= 1} A211419(n)*x^n/n ).

Original entry on oeis.org

1, 10, 149, 2630, 51002, 1050132, 22539085, 498732014, 11296141454, 260613866380, 6103074997890, 144696786555580, 3466352150674324, 83776927644646952, 2040261954214847421, 50018542073019175806, 1233419779839067305350, 30572886836581693309020
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) at k = 4. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262739 (k = 5), A262740 (k = 6).

Programs

  • Maple
    A262738 := proc(n) option remember; if n = 0 then 1 else add((6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*A262738(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262738(n), n = 0..20);
  • PARI
    a(n) = sum(k=0, n, binomial(6*(n+1),k)*binomial(5*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(6*n,i)*binomial(5*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A211419.
O.g.f. is the series reversion of x*(1 - x)^4/(1 + x)^6.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} (6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*a(n-k).

A262740 O.g.f. exp( Sum_{n >= 1} A211421(n)*x^n/n ).

Original entry on oeis.org

1, 14, 293, 7266, 197962, 5726364, 172662765, 5367187226, 170772853790, 5534640052292, 182070248073826, 6063785526898644, 204055962203476788, 6927718839334775608, 236994877398511998717, 8161492483543100398410, 282705062046649346154006, 9843330120848835962213940
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) at k = 6. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A211421, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262738 (k = 4), A262739 (k = 5).

Programs

  • Maple
    #A262740
    A262740 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(8*k)!/(4*k)!*(3*k)!/(6*k)!*A262740(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262740(n), n = 0..17);
  • PARI
    a(n) = sum(k=0, n, binomial(8*(n+1),k)*binomial(7*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(8*n,i)*binomial(7*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (8*n)!/(4*n)! * (3*n)!/(6*n)!*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A211421.
O.g.f. is the series reversion of x*(1 - x)^6/(1 + x)^8.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k! * (8*k)!/(4*k)! * (3*k)!/(6*k)!*a(n-k).
Showing 1-4 of 4 results.