cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A211421 Integral factorial ratio sequence: a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!).

Original entry on oeis.org

1, 14, 390, 12236, 404550, 13777764, 478273692, 16825310040, 597752648262, 21397472070260, 770557136489140, 27884297395587240, 1013127645555452700, 36935287875280348776, 1350441573221798941560, 49498889739033621986736, 1818284097150186829038150
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 4, b = 3 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420 (a = 4, b = 1).
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 6. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A262740.

Programs

  • Magma
    [Factorial(8*n)*Factorial(3*n)/(Factorial(6*n)*Factorial(4*n)*Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    #A211421
    a := n -> (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    seq(a(n), n = 0..16);
  • Mathematica
    Table[(8 n)!*(3 n)!/((6 n)!*(4 n)!*n!), {n, 0, 15}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. sum {n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(8*n,i) * binomial(7*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^8/(1 - x)^6 )^n.
a(0) = 1 and a(n) = 2*(8*n - 1)*(8*n - 3)*(8*n - 5)*(8*n - 7)/( n*(6*n - 1)*(6*n - 3)*(6*n - 5) ) * a(n-1) for n >= 1.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + 197962*x^4 + 5726364*x^5 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^6/(1 + x)^8. See A262740. (End)
a(n) ~ 2^(10*n)*27^(-n)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = (2^n/n!)*Product_{k = 3*n..4*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(6*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(8*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((8*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((6*n+1)/2).
a(n) = [x^n] (1+4*x)^((8*n-1)/2). (End)

A262737 O.g.f. exp( Sum_{n >= 1} A262732(n)*x^n/n ).

Original entry on oeis.org

1, 8, 95, 1336, 20642, 338640, 5791291, 102108760, 1842857390, 33879118384, 632210693270, 11944142806064, 228010741228740, 4391334026631072, 85221618348230355, 1664901954576830360, 32716286416687895862, 646228961799752926320, 12823701194384778672322
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) for k = 3. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262738 (k = 4), A262739 (k = 5), A262740 (k = 6), A262732.

Programs

  • Maple
    A262737 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(5*k)!/GAMMA(5*k/2 + 1)*GAMMA(3*k/2 + 1)/(3*k)!*A262737(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262737(n), n = 0 .. 20);
  • PARI
    a(n) = sum(k=0, n, binomial(5*(n+1),k)*binomial(4*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(5*n,i)*binomial(4*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!*x^n/n ) = 1 + 8*x + 195*x^2 + 1336*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A262732.
O.g.f. is the series reversion of x*(1 - x)^3/(1 + x)^5.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k!*(5*k)!/GAMMA(5*k/2+1)*GAMMA(3*k/2+1)/(3*k)! * a(n-k).

A262738 O.g.f. exp( Sum_{n >= 1} A211419(n)*x^n/n ).

Original entry on oeis.org

1, 10, 149, 2630, 51002, 1050132, 22539085, 498732014, 11296141454, 260613866380, 6103074997890, 144696786555580, 3466352150674324, 83776927644646952, 2040261954214847421, 50018542073019175806, 1233419779839067305350, 30572886836581693309020
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) at k = 4. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262739 (k = 5), A262740 (k = 6).

Programs

  • Maple
    A262738 := proc(n) option remember; if n = 0 then 1 else add((6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*A262738(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262738(n), n = 0..20);
  • PARI
    a(n) = sum(k=0, n, binomial(6*(n+1),k)*binomial(5*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(6*n,i)*binomial(5*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A211419.
O.g.f. is the series reversion of x*(1 - x)^4/(1 + x)^6.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} (6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*a(n-k).

A262739 O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).

Original entry on oeis.org

1, 12, 215, 4564, 106442, 2635704, 68031147, 1810302340, 49308457334, 1368019979976, 38525145673126, 1098380420669000, 31641932951483220, 919622628946689648, 26931762975278938035, 793967020231145502564, 23543663463050594677310, 701763102761640853890600, 21014048069544552257072530, 631868353403527700756671320, 19070677448561228207945931276
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) when k = 5. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A262733, A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262738 (k = 4), A262740 (k = 6).

Programs

  • Maple
    A262739 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(7*k)!/GAMMA(7*k/2 + 1)*GAMMA(5*k/2 + 1)/(5*k)!*A262739(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262739(n), n = 0..20);
  • PARI
    a(n) = sum(k=0, n, binomial(7*(n+1),k)*binomial(6*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(7*n,i)*binomial(6*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A262733.
O.g.f. is the series reversion of x*(1 - x)^5/(1 + x)^7,
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k! * (7*k)!/(7*k/2)! * (5*k/2)!/(5*k)!*a(n-k).
Showing 1-4 of 4 results.