a(n) = Sum_{i = 0..n} binomial(5*n,i) * binomial(4*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^5/(1 - x)^3 )^n.
D-finite with recurrence a(n) = 20*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/( n*(3*n - 1)*(3*n - 3)*(3*n - 5) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 8*x + 95*x^2 + 1336*x^4 + ... has integer coefficients and equals (1/x) * (series reversion of x*(1 - x)^3/(1 + x)^5). See
A262737.
a(n) ~ 2^n*3^(-3*n/2)*5^(5*n/2)/sqrt(2*Pi*n). -
Ilya Gutkovskiy, Jul 31 2016
a(n) = Sum_{k = 0..floor(n/2)} binomial(8*n,n - 2*k) * binomial(3*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x^2) + 8*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [4/3, 3/2, 2/3], (12500/27)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^5/(1 - x)^3) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
Integral representation of a(n) as the n-th moment of a positive function w(x) on the support (0, sqrt(12500/27)):
a(n) = Integral_{x=0..sqrt(12500/27)} x^n*w(x) dx,
where w(x) = sqrt(5)*2^(3/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*hypergeom([1/10, 4/15, 3/5, 14/15], [1/5, 2/5, 4/5], 27*x^2*(1/12500))/(10*Pi*x^(4/5)) + sqrt(5)*2^(4/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*hypergeom([3/10, 7/15, 4/5, 17/15], [2/5, 3/5, 6/5], 27*x^2*(1/12500))/(50*Pi*x^(2/5)) + sqrt(5)*2^(1/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*x^(2/5)*hypergeom([7/10, 13/15, 6/5, 23/15], [4/5, 7/5, 8/5], 27*x^2*(1/12500))/(625*Pi) + 11*sqrt(5)*2^(2/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*x^(4/5)*hypergeom([9/10, 16/15, 7/5, 26/15], [6/5, 8/5, 9/5], 27*x^2*(1/12500))/(50000*Pi). The function w(x) involves four different hypergeometric functions of type 4F3. The function w(x) is singular at both ends of the support. It is the solution of the Hausdorff moment problem and as such it is unique. (End)
a(n) = [x^n] (1 + 4*x)^((5*n-1)/2) = 4^n*binomial((5*n-1)/2,n).
a(p) == a(1) (mod p^3) for prime p >= 5.
More generally, we conjecture that a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) for prime p >= 5 and positive integers n and k. (End)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(3*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = [x^n] 1/(1-4*x)^((3*n+1)/2). (End)
Comments