cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A091527 a(n) = ((3*n)!/n!^2)*(Gamma(1+n/2)/Gamma(1+3n/2)).

Original entry on oeis.org

1, 4, 30, 256, 2310, 21504, 204204, 1966080, 19122246, 187432960, 1848483780, 18320719872, 182327718300, 1820797698048, 18236779032600, 183120225632256, 1842826521244230, 18581317012684800, 187679234340049620, 1898554215471513600, 19232182592635611060
Offset: 0

Views

Author

Michael Somos, Jan 18 2004

Keywords

Comments

Sequence terms are given by [x^n] ( (1 + x)^(k+2)/(1 - x)^k )^n for k = 1. See the crossreferences for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015
Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for n >= 0. This is the case a = 1, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Cf. A061162(n) = a(2n), A007297, A000984 (k = 0), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A211421 (k = 6), A276098, A276099.

Programs

  • Maple
    a := n -> 4^n * `if`(n<2, 1, (2*(n+1)*binomial((3*n-1)/2, n + 1))/(n-1)):
    seq(a(n), n=0..18); # Peter Luschny, Feb 03 2020
  • Mathematica
    Table[((3 n)!/n!^2) Gamma[1 + n/2]/Gamma[1 + 3 n/2], {n, 0, 18}] (* Michael De Vlieger, Oct 02 2015 *)
    Table[4^n Sum[Binomial[k - 1 + (n - 1)/2, k], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
  • Maxima
    B(x):=(-1/3+(2/3)*sqrt(1+9*x)*sin((1/3)*asin((2+27*x+54*x^2)/2/(1+9*x)^(3/2))))/x-1;
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 02 2015 */
    
  • PARI
    a(n)=4^n*sum(i=0,n,binomial(i-1+(n-1)/2,i))
    
  • PARI
    vector(30, n, sum(k=0, n, binomial(3*n-3, k)*binomial(2*n-k-3, n-k-1))) \\ Altug Alkan, Oct 04 2015
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091527(n): return int((factorial(3*n)*factorial2(n)<Chai Wah Wu, Aug 10 2023

Formula

D-finite with recurrence n*(n - 1)*a(n) = 12*(3*n - 1)*(3*n - 5)*a(n-2).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(3*n,i) * binomial(2*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^3/(1 - x) )^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + 9192*x^5 + ... is the o.g.f. for A007297 (but with an offset of 0). (End)
a(n) = (n+1)*A078531(n). [Barry, JIS (2011)]
G.f.: x*B'(x)/B(x), where x*B(x)+1 is g.f. of A007297. - Vladimir Kruchinin, Oct 02 2015
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(4*n,n-2*k)*binomial(n+k-1,k).
O.g.f.: A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x^2) + 4*x*Hypergeom([4/3, 2/3], [3/2], 108*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^3/(1 - x)) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
a(n) ~ 2^n*3^(3*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Aug 22 2016
a(n) = 4^n*2*(n+1)*binomial((3*n-1)/2, n+1)/(n-1) for n >= 2. - Peter Luschny, Feb 03 2020
From Peter Bala, Mar 04 2022: (Start)
The o.g.f. A(x) satisfies the algebraic equation (1 - 108*x^2)*A(x)^3 - A(x) = 8*x. Cf. A244039.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for primes p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((3*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((n+1)/2).
a(n) = [x^n] (1+4*x)^((3*n-1)/2). (End)

A211419 a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!).

Original entry on oeis.org

1, 10, 198, 4420, 104006, 2521260, 62300700, 1560167752, 39457579590, 1005490725148, 25776935824948, 664048851069240, 17175945353271068, 445775181599116600, 11602978540817349240, 302767701121286251920, 7917664916276259668550, 207452338901630123085180
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 3, b = 2 of the following result (see Bober, Theorem 1.2): Let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211420 (a = 4, b = 1), A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1).
This is the case m = 3n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
Sequence terms are given by the coefficient of x^n in the expansion of ((1 + x)^(k+2)/(1 - x)^k)^n when k = 4. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.

Crossrefs

Cf. A000984 (k=0), A091527 (k=1), A001448 (k=2), A262732 (k=3), A262733 (k=5), A211421 (k=6), A262738.

Programs

  • Magma
    [Factorial(6*n) * Factorial(2*n) / (Factorial(4*n) * Factorial(3*n) * Factorial(n)): n in [0..20]]; // Vincenzo Librandi, May 03 2018
  • Maple
    A211419 := n-> (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!):
    seq(A211419(n), n=0..20);
    # Using the o.g.f. from Karol A. Penson and Jean-Marie Maillard:
    u := 27*x-1: c := (u^3*((3*x*u)^(1/2)*(12+81*x)-u^2+216*x-7))^(1/3):
    gf := ((c^2-2*c*u+27*u*(7-81*x)*x-4*u)/(6*c*u^2))^(1/2):
    ser := series(gf, x, 8); # Peter Luschny, May 03 2018
    ogf := hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z): ser := series(ogf, z, 20):
    seq(coeff(ser, z, n), n = 0..17);  # Peter Luschny, Feb 22 2024
  • Mathematica
    Table[(6 n)!*(2 n)!/((4 n)!*(3 n)!*n!), {n, 0, 16}] (* Michael De Vlieger, Oct 04 2015 *)
    CoefficientList[Series[Sqrt[(4 + 7290 x^2 - 59049 x^3 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3) + (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(2/3) - 27 x (11 + 2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3)))/(6 (1 - 27 x)^2 (8 + 3 Sqrt[3] Sqrt[x (-1 + 27 x)^7 (4 + 27 x)^2] - 27 x (-2 + 27 x) (-17 + 27 x (19 + 27 x (-11 + 27 x))))^(1/3))],{x,0,16}],x] (* Karol A. Penson and Jean-Marie Maillard, May 02 2018 *)
  • PARI
    a(n) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(6*n, i) * binomial(5*n-i-1, n-i).
a(n) = [x^n] ( (1 + x)^6/(1 - x)^4 )^n.
O.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + 51002*x^4 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^4/ (1 + x)^6. See A262738. (End)
a(n) ~ 27^n/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
O.g.f.: sqrt((4 + 7290*x^2 - 59049*x^3 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3) + (8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(2/3) - 27*x*(11 + 2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3)))/(6*(1 - 27*x)^2*(8 + 3*sqrt(3)*sqrt(x*(-1 + 27*x)^7*(4 + 27*x)^2) - 27*x*(-2 + 27*x)*(-17 + 27*x*(19 + 27*x*(-11 + 27*x))))^(1/3))). - Karol A. Penson and Jean-Marie Maillard, May 02 2018
Right-hand side of the binomial sum identity: Sum_{k = 0..2*n} (-1)^(n+k) * binomial(6*n, 2*n+k) * binomial(2*n, k) = (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!). - Peter Bala, Jan 19 2020
a(n) = 6*(6*n - 1)*(2*n - 1)*(6*n - 5)*a(n-1)/(n*(4*n - 1)*(4*n - 3)). - Neven Sajko, Jul 19 2023
From Peter Luschny, Feb 22 2024: (Start)
a(n) = 4^n*(Gamma(3*n + 1/2)/Gamma(2*n + 1/2))/Gamma(n + 1).
O.g.f.: hypergeom([1/6, 1/2, 5/6], [1/4, 3/4], 27*z). (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(4*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(6*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((6*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((4*n+1)/2).
a(n) = [x^n] (1+4*x)^((6*n-1)/2). (End)

A211421 Integral factorial ratio sequence: a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!).

Original entry on oeis.org

1, 14, 390, 12236, 404550, 13777764, 478273692, 16825310040, 597752648262, 21397472070260, 770557136489140, 27884297395587240, 1013127645555452700, 36935287875280348776, 1350441573221798941560, 49498889739033621986736, 1818284097150186829038150
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 4, b = 3 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420 (a = 4, b = 1).
Sequence terms are given by the coefficient of x^n in the expansion of ( (1 + x)^(k+2)/(1 - x)^k )^n when k = 6. See the cross references for related sequences obtained from other values of k. - Peter Bala, Sep 29 2015

Crossrefs

Cf. A000984 (k = 0), A091527 (k = 1), A001448 (k = 2), A262732 (k = 3), A211419 (k = 4), A262733 (k = 5), A262740.

Programs

  • Magma
    [Factorial(8*n)*Factorial(3*n)/(Factorial(6*n)*Factorial(4*n)*Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    #A211421
    a := n -> (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    seq(a(n), n = 0..16);
  • Mathematica
    Table[(8 n)!*(3 n)!/((6 n)!*(4 n)!*n!), {n, 0, 15}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    a(n) = (8*n)!*(3*n)!/((6*n)!*(4*n)!*n!);
    vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

The o.g.f. sum {n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
From Peter Bala, Sep 29 2015: (Start)
a(n) = Sum_{i = 0..n} binomial(8*n,i) * binomial(7*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^8/(1 - x)^6 )^n.
a(0) = 1 and a(n) = 2*(8*n - 1)*(8*n - 3)*(8*n - 5)*(8*n - 7)/( n*(6*n - 1)*(6*n - 3)*(6*n - 5) ) * a(n-1) for n >= 1.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + 197962*x^4 + 5726364*x^5 + ... has integer coefficients and equals 1/x * series reversion of x*(1 - x)^6/(1 + x)^8. See A262740. (End)
a(n) ~ 2^(10*n)*27^(-n)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
a(n) = (2^n/n!)*Product_{k = 3*n..4*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(6*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(8*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = 4^n * binomial((8*n-1)/2,n).
a(n) = [x^n] 1/(1-4*x)^((6*n+1)/2).
a(n) = [x^n] (1+4*x)^((8*n-1)/2). (End)

A061163 a(n) = (10n)!*n!/((5n)!*(4n)!*(2n)!).

Original entry on oeis.org

1, 630, 1385670, 3528923580, 9540949030470, 26651569523959380, 75998432812419471900, 219813190240007470094520, 642409325786050322446410310, 1892390644737640220059489996260
Offset: 0

Views

Author

Richard Stanley, Apr 17 2001

Keywords

Comments

According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.
This sequence is the particular case a = 5, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420(a = 4, b = 1) and A211421 (a = 4, b = 3). The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012
Continuing the comment above: This is case n = 4 of the array of sequences
A(n, k) = 4^(n*k)*(Gamma((n + 1)*k + 1/2)/Gamma(k + 1/2)) / Gamma(n * k + 1). See the cross-references for other cases. - Peter Luschny, Feb 21 2024

References

  • M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.

Crossrefs

Cf. A000012 (n=0), A001448 (n=1), A061162 (n=2), A211420 (n=3), this sequence (n=4).

Programs

  • Maple
    A061163 := n->(10*n)!*n!/((5*n)!*(4*n)!*(2*n)!);
    # Alternative:
    A := (n, k) -> 4^(n*k)*(GAMMA((n + 1)*k + 1/2)/GAMMA(k + 1/2))/GAMMA(n*k + 1):
    seq(A(4, k), k = 0..9);  # Peter Luschny, Feb 21 2024
  • Mathematica
    Table[(10n)! n!/((5n)!(4n)!(2n)!),{n,0,10}] (* Harvey P. Dale, Oct 24 2022 *)

Formula

n*(4*n-3)*(2*n-1)*(4*n-1)*a(n) -10*(10*n-9)*(10*n-7)*(10*n-3)*(10*n-1)*a(n-1)=0. - R. J. Mathar, Oct 26 2014
O.g.f. is a generalized hypergeometric function 4F3([1/10, 3/10, 7/10, 9/10], [1/4, 1/2, 3/4], 5^5*z). - Karol A. Penson, Apr 13 2022
From Karol A. Penson, Feb 21 2024: (Start)
(O.g.f.(z))^2 satisfies the algebraic equation of order 15, in which the powers of (O.g.f.(z))^2 are multiplied by polynomials p(n, z) with integer coefficients, in the form: Sum_{n = 0..15} p(n, z)*(O.g.f.(z))^(2*n) = 0.
Here is the list of orders, in the variable z, of all polynomials p(n, z) for n=0..15: 9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,12. For example p(15, z) = 2^50*(5^5*z-1)^12. (End)
a(n) ~ 5^(5*n) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 27 2024

A211417 Integral factorial ratio sequence: a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!).

Original entry on oeis.org

1, 77636318760, 53837289804317953893960, 43880754270176401422739454033276880, 38113558705192522309151157825210540422513019720, 34255316578084325260482016910137568877961925210286281393760
Offset: 0

Views

Author

Peter Bala, Apr 11 2012

Keywords

Comments

The integrality of this sequence can be used to prove Chebyshev's estimate C(1)*x/log(x) <= #{primes <= x} <= C(2)*x/log(x), for x sufficiently large; the constant C(1) = 0.921292... and C(2) = 1.105550.... Chebyshev's approach used the related step function floor(x) -floor(x/2) -floor(x/3) -floor(x/5) +floor(x/30). See A182067.
This sequence is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin.
The o.g.f. sum {n >= 0} a(n)*z^n is a generalized hypergeometric series of type 8F7 (see Bober, Table 2, Entry 31) and is an algebraic function of degree 483840 over the field of rational functions Q(z) (see Rodriguez-Villegas). Bober remarks that the monodromy group of the differential equation satisfied by the o.g.f. is W(E_8), the Weyl group of the E_8 root system.
See the Bala link for the proof that a(n), n = 0,1,2..., is an integer.
Congruences: a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(30*n,15*n)*C(15*n,5*n)/C(6*n,n) and use equation 39 in Mestrovic, p. 12). More generally, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. Cf. A295431. - Peter Bala, Jan 24 2020

Crossrefs

Programs

  • Magma
    [Factorial(30*n)*Factorial(n)/(Factorial(15*n)*Factorial(10*n)*Factorial(6*n)): n in [0..10]]; // Vincenzo Librandi, Oct 03 2015
  • Mathematica
    Table[(30 n)!*n!/((15 n)!*(10 n)!*(6 n)!), {n, 0, 5}] (* Michael De Vlieger, Oct 02 2015 *)
  • PARI
    a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!);
    vector(10, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    

Formula

a(n) ~ 2^(14*n-1) * 3^(9*n-1/2) * 5^(5*n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 30 2016

A061164 a(n) = (20*n)!n!/((10*n)!(7*n)!(4*n)!).

Original entry on oeis.org

1, 5542680, 190818980609400, 7691041400616850556280, 330014847932376708502470210680, 14647137653300940580784413641872332680, 663999280578266939183818080578580843597787800, 30541460340748361003270983719744457382865889296237000
Offset: 0

Views

Author

Richard Stanley, Apr 17 2001

Keywords

Comments

According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.

References

  • M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.

Crossrefs

Programs

  • Magma
    [Factorial(20*n)*Factorial(n)/(Factorial(10*n)*Factorial(7*n)*Factorial(4*n)): n in [0..8]]; // Vincenzo Librandi, Oct 26 2011
    
  • Maple
    A061164 := proc(n)
            binomial(20*n,10*n)*binomial(10*n,3*n)/binomial(4*n,n) ;
    end proc:
    seq(A061164(n),n=0..10) ; # R. J. Mathar, Oct 26 2011
  • Mathematica
    Table[((20n)!n!)/((10n)!(7n)!(4n)!),{n,0,10}] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    a(n)=(20*n)!*n!/(10*n)!/(7*n)!/(4*n)! \\ Charles R Greathouse IV, Apr 10 2012

Formula

One of the 52 sporadic integral factorial ratio sequences found by V. I. Vasyunin (see Bober, Table 2, Entry 43). The o.g.f. sum {n >= 1} a(n)*z^n is an algebraic function over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012
O.g.f. is a generalized hypergeometric function 8F7([1/20, 3/20, 7/20, 9/20, 11/20, 13/20, 17/20, 19/20], [1/7, 2/7, 3/7, 1/2, 4/7, 5/7, 6/7], ((2^22)*(5^10)*x)/7^7). - Karol A. Penson, Apr 11 2022
a(n) ~ 2^(22*n - 1) * 5^(10*n) / (sqrt(Pi*n) * 7^(7*n + 1/2)). - Vaclav Kotesovec, Aug 27 2024

A091496 a(n) = ((5*n)!/(n!*(2*n)!))*(Gamma(1+n/2)/Gamma(1+5*n/2)).

Original entry on oeis.org

1, 16, 630, 28672, 1385670, 69206016, 3528923580, 182536110080, 9540949030470, 502682972323840, 26651569523959380, 1420217179365703680, 75998432812419471900, 4081125953526124511232, 219813190240007470094520, 11869871068877664049692672, 642409325786050322446410310
Offset: 0

Views

Author

Michael Somos, Jan 15 2004

Keywords

Comments

Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 2, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Mathematica
    Table[((5 n)!/(n! (2 n)!)) (Gamma[1 + n/2]/Gamma[1 + 5 n/2]), {n, 0, 14}] (* or *)
    Table[Sum[Binomial[6 n, 2 n - 2 k] Binomial[n + k - 1, k], {k, 0, n}], {n, 0, 14}] (* or *)
    Table[Sum[Binomial[5 n, k] Binomial[3 n - k - 1, 2 n - k], {k, 0, 2 n}], {n, 0, 14}] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    a(n)=16^n*sum(i=0,2*n,binomial(i-1+(n-1)/2,i))
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091496(n): return int((factorial(5*n)*factorial2(n)<<(n<<1))//(factorial(n)*factorial(n<<1)*factorial2(5*n))) # Chai Wah Wu, Aug 10 2023

Formula

n*(n-1)*(2*n-1)*(2*n-3)*a(n) = 20*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2).
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..2*n} binomial(5*n, k)*binomial(3*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(6*n, 2*n - 2*k)*binomial(n + k - 1, k).
a(n) ~ 5^(5*n/2)/(2*sqrt(Pi*n)).
O.g.f. A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [3/4, 1/2, 1/4], 3125*x^2) + 16*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [5/4, 3/2, 3/4], 3125*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^5/(1 - x). Cf. A061162 and A262732.
It follows that the o.g.f. for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 16*x + 443*x^2 + 15280*x^3 + 591998*x^4 + 24635360*x^5 + 1075884051*x^6 + ... has integer coefficients.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)/(1 + x)^5) ) and put G(x) = 1 + x*d/dx(log(F(x))). Then A(x) satisfies A(x^2) = (G(x) + G(-x))/2. (End)
O.g.f. denoted by h(x), satisfies algebraic equation of order 10: -800000*x^4 + 81*x^2 - 25000*x^3*h(x) - 25*x^2*(1400000*x^2 - 123)*h(x)^2 + 8*x*(178125*x^2 - 32)*h(x)^3 + (-31250000*x^4 + 22500*x^2 + 4)*h(x)^4 + 32*x*(137500*x^2 - 19)*(3125*x^2 - 1)*h(x)^5 + 12*(3125*x^2 - 1)*(3125*x^2 + 3)*h(x)^6 + 800*x*(3125*x^2 - 1)^2*h(x)^7 + 96*(3125*x^2 - 1)^2*h(x)^8 + 64*(3125*x^2 - 1)^3*h(x)^10 = 0. - Karol A. Penson, Apr 30 2025

A211420 a(n) = (8*n)!*n!/((4*n)!*(3*n)!*(2*n)!).

Original entry on oeis.org

1, 140, 60060, 29745716, 15628090140, 8480843582640, 4697400936504900, 2638798257262351800, 1497753729733989900060, 856840435680656569701776, 493243073668546377605912560, 285369375758780754651194529300, 165789876049841088844342275759300
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

This sequence is the particular case a = 4, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419(a = 3, b = 2), A211421(a = 4, b = 3) and A061163 (a = 5, b = 1).

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    a := n -> (2^(6*n)*GAMMA(4*n + 1/2))/(GAMMA(n + 1/2)*GAMMA(3*n + 1)):
    seq(a(n), n = 0..12); # Peter Luschny, Jul 11 2023
  • Mathematica
    Table[ 2^(6*n) * Gamma[4*n + 1/2] / (Gamma[n + 1/2] * Gamma[3*n + 1]), {n, 0, 12}] (* James C. McMahon, Feb 24 2024 *)

Formula

The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas).
D-finite with recurrence: 3*(3*n-1)*(2*n-1)*(3*n-2)*n*a(n) - 8*(8*n-3)*(8*n-1)*(8*n-7)*(8*n-5)*a(n-1) = 0. - Georg Fischer, Nov 30 2022
From Peter Bala, Jul 10 2023: (Start)
a(n) = Sum_{k = 0..3*n} binomial(8*n, k)*binomial(5*n-k-1, 3*n-k).
a(n) = [x^(3*n)] F(x)^n, where F(x) = (1 + x)^8/(1 - x)^2.
It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/3*( 1/(1 - t*F(x^(1/3))) + 1/(1 - t*F(w*x^(1/3))) + 1/(1 - t*F(w^2*x^(1/3))) ), where w = exp(2*Pi*i/3), and hence A(x), as stated above, is algebraic over Q(x) by Stanley 1999, Theorem 6.33, p. 197. (End)
From Karol A. Penson, Feb 23 2024: (Start)
O.g.f.: hypergeometric4F3([1/8, 3/8, 5/8, 7/8], [1/3, 1/2, 2/3], (2^14*z)/27). (O.g.f.(z))^2 satisfies the algebraic equation of order 16, in which the powers of (o.g.f.(z))^2 are multiplied by polynomials p(n, z) with integer coefficients, in the form: Sum_{n = 0..16} p(n, z) * (o.g.f.(z))^(2*n) = 0.
Here is the list of orders, in the variable z, of all polynomials p(n, z) for n = 0..16: 8,8,8,8,9,9,9,9,10,10,10,11,11,11,11,11,12. For example p(14, z) = 6*(2^13*z + 31*27)*(2^14*z - 27)^10. (End)
a(n) ~ 2^(14*n - 1/2) / (3^(3*n + 1/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 27 2024

A364518 Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364519.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that the unsigned version of row 0 (the central binomial numbers A000984) and row 2 satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0   1      2        3           4             5
  - + - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1  -2      6      -20          70          -252   ... see A000984
  1 |  1   0    -10        0         198             0   ... see A211419
  2 |  1   6     70      924       12870        184756   ... A001448
  3 |  1  16    630    28672     1385670      69206016   ... A091496
  4 |  1  30   2310   204204    19122246    1848483780   ... A061162
  5 |  1  48   6006   860160   130378950   20392706048   ... A276098
  6 |  1  70  12870  2704156   601080390  137846528820   ... A001448 bisected
  7 |  1  96  24310  7028736  2149374150  678057476096   ... A276099
		

Crossrefs

Cf. A000984 (row 0 unsigned), A211419 (row 1 unsigned without 0's), A001448 (row 2), A091496 (row 3), A061162 (row 4), A276098 (row 5), A001448 bisected (row 6), A276099 (row 7).

Programs

  • Maple
    T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..2*k} binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j).
T(2,k) = binomial(4*k,2*k).
For n >= 3, T(n,k) = binomial(n*k-1,2*k) * hypergeom([-(n+2)*k, -2*k], [1 - n*k], -1) except when (n,k) = (3,1).
For n >= 2, T(n,k) = ((n+2)*k)!*((n-2)*k/2)!/(((n+2)*k/2)!*((n-2)*k)!*(2*k)!) by Kummer's Theorem.
T(n,k) = [x^k] (1 - x)^(2*k) * Chebyshev_T(n*k, (1 + x)/(1 - x)).
T(n,k) = Sum_{j = 0..k} binomial(2*n*k, 2*j)*binomial((n-1)*k-j-1, k-j).
For n >= 3, T(n,k) = binomial((n-1)*k-1,k) * hypergeom([-n*k, -k, -n*k + 1/2], [1 - (n-1)*k, 1/2], 1).
The row generating functions are algebraic functions over the field of rational functions Q(x).
Showing 1-9 of 9 results.