A217479 Array of coefficients of polynomials providing the third term of the numerator of the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;2,x^2), m >= 2.
-8, 6, -27, 65, -56, 15, -61, 260, -469, 415, -176, 28, -114, 736, -2104, 3214, -2838, 1456, -400, 45, -190, 1714, -6988, 15699, -21461, 18760, -10614, 3768, -760, 66, -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91
Offset: 2
Examples
The array a(m,k) starts: m\k 0 1 2 3 4 5 6 7 8 9 ... 2: -8 6 3: -27 65 -56 15 4: -61 260 -469 415 -176 28 5: -114 736 -2104 3214 -2838 1456 -400 45 6: -190 1714 -6988 15699 -21461 18760 -10614 3768 -760 66 ... Row m=7: -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91. Row m=8: -427, 6536, -46102, 183762, -461654, 780716, -926345, 790773, -491397, 221760, -71139, 15405, -2016, 120. Row 9: -596, 11346, -100077, 502036, -1600280, 3470116, -5352805, 6051236, -5110145, 3256825, -1568416, 564980, -148176, 26770, -2976, 153. m=2: P(2;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x) - (tau(0,x)+tau(1,x)+tau(2,x))*x^4 + (5 -10*x^2 + 10*x^4 - 5*x^6 + x^8) = -8 + 6*x^2 = 2*(-4 + 3*x^2). The numerator of the o.g.f. for S(n,x)^5 is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + (-x*z)^2*2*(-4 + 3*x^2), where the last bracket in the second term comes from row m=2 of A217478. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). See the example of A217478.
Crossrefs
Cf. A217478.
Formula
a(m,k) = [x^(2*k)] P(2;m,x^2), m >= 2, k = 0..(2*m-3), with P(2;m,x^2) given in the comment above.
Comments