A217478 Triangle of coefficients of polynomials providing the second term of the numerator for the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;1,x^2).
-2, 3, -4, -4, 10, -6, 5, -20, 21, -8, -6, 35, -56, 36, -10, 7, -56, 126, -120, 55, -12, -8, 84, -252, 330, -220, 78, -14, 9, -120, 462, -792, 715, -364, 105, -16, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 1
Examples
The triangle a(m,k) begins: m\k 0 1 2 3 4 5 6 7 8 9 ... 1: -2 2: 3 -4 3: -4 10 -6 4: 5 -20 21 -8 5: -6 35 -56 36 -10 6: 7 -56 126 -120 55 -12 7: 8 84 -252 330 -220 78 -14 8: 9 -120 462 -792 715 -364 105 -16 9: -10 165 -792 1716 -2002 1365 -560 136 -18 10: 11 -220 1287 -3432 5005 -4368 2380 -816 171 -20 ... P(2;1,x^2) = 3 - 4*x^2, appears in the second term of the numerator of the o.g.f. for S(n,x)^5 which is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + ((-x*z)^2)*2*(-4 +3*x^2). The last term is taken from row m=2 of A217479. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). This checks with [1,x^5,-1+5*x^2-10*x^4+10*x^6-5*x^8 +x^10,-32*x^5+80*x^7-80*x^9+40*x^11-10* x^13+x^15,...] for S(n,x)^5, n=0,1,2,3,...
Formula
a(m,k) = [x^(2*k)] P(m;1,x^2) = [x^(2*k)](sum(tau(k,x),k=0..m) - x^(2*m)) (see the comment above), m>=1, k = 0..m-1.
a(m,k) = (-1)^(m-k)*binomial(m+k+1,2*k+1). For the proof one uses the identity sum(tau(j,x),j=0..m) = S(m,x^2-2) which holds by comparing the o.g.f.s of both sides (see a Nov 13 2012 comment on Riordan A053122 where tau is called r).
Comments