cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006177 Witt vector *2!/2!.

Original entry on oeis.org

1, 1, 3, 8, 25, 72, 245, 772, 2692, 8925, 32065, 109890, 400023, 1402723, 5165327, 18484746, 68635477, 248339122, 930138521, 3406231198, 12810761323, 47306348881, 178987624513, 665627041157, 2528210175630, 9456885664122
Offset: 1

Views

Author

Keywords

Comments

The Somos transform sends sequence {a(n)} to sequence with g.f. Product_{i=1..n} 1/(1-a(i)*x^i).
If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Inverse Somos transform of A000108. - Wouter Meeussen, Aug 20 2002
Witt transform of A022553.

Extensions

Edited by Christian G. Bower, Aug 20 2002, Aug 28 2002

A006174 Witt vector *3!.

Original entry on oeis.org

6, 27, 488, 7974, 149796, 2725447, 56970432, 1151053821, 25279412332, 543871341927, 12411512060544, 278163517356594, 6498314231705568, 149846653983570795, 3565206002960088128, 84045618111578025105
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A074651.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A006175 Witt vector *4!.

Original entry on oeis.org

24, 972, 118592, 15210414, 2344956480, 377420590432, 67501965869568, 12329221295657241, 2383082885396731968, 467786496795764717088, 95188347941581635319296, 19578329367376510676884584
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A074652.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A006176 Witt vector *5!.

Original entry on oeis.org

120, 49500, 55480000, 75108093750, 124667171985024, 226899085942554400, 453922674315047424000, 954267187464733528198125, 2112236210012497151219800000, 4825706564405954731805322783552
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A074653.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A006178 Witt vector *3!/3!.

Original entry on oeis.org

1, 7, 93, 1419, 25225, 472037, 9501737, 196190781, 4219610242, 92198459515, 2068590840349, 46897782768404, 1083052539395723, 25199771186287195, 594383312662808405, 14098935496013599680, 337939791145403719897
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A029808.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A006179 Witt vector *4!/4!.

Original entry on oeis.org

1, 52, 5133, 655554, 97772875, 16019720210, 2812609211657, 518332479161091, 99318252448110232, 19600890528520952329, 3966181169996511862429, 818653886943854653597621, 171938262068874336023196923
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A029809.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A006180 Witt vector *5!/5!.

Original entry on oeis.org

1, 472, 467133, 636430764, 1038934571875, 1903882757758426, 3782689379194538057, 7975541699963490241566, 17602442746255160006062232, 40278440105728693363331297293
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A074654.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A061655 The number 2 (that is, 1+1) in the Witt vector ring for p=2 over the integers.

Original entry on oeis.org

2, -1, -4, -40, -4960, -147166720, -299211527038566400, -2703337074029927682081937523621232640
Offset: 0

Views

Author

David A. Madore, Jun 15 2001

Keywords

Examples

			a(0)^4 + 2*a(1)^2 + 4*a(2) = 2^4 + 2*(-1)^2 + 4*(-4) = 16+2-16 = 2.
		

References

  • Jean-Pierre Serre, Local Fields (Corps Locaux), chapter 2, paragraph 6

Crossrefs

Cf. A006173 and others.

Formula

Sum(2^j*a(j)^(2^(i-j)), j=0..i)=2 for all i.
Showing 1-8 of 8 results.