cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Richard Ehrenborg

Richard Ehrenborg's wiki page.

Richard Ehrenborg has authored 10 sequences.

A340398 Number of spanning trees in the Bruhat graph of the symmetric group.

Original entry on oeis.org

1, 1, 81, 22799473113563136
Offset: 1

Author

Richard Ehrenborg, Jan 06 2021

Keywords

Comments

The Bruhat graph of the symmetric group S_n has the set of all permutations on n elements as the vertex set and two permutations pi and sigma are connected with an edge if pi sigma^{-1} is a transposition.

Examples

			For n=3 the number of spanning trees is 81 since the graph is the complete bipartite graph K_{3,3}.
For n=4, the following calculation demonstrates the formula:
  31: 6 - (1-1) - (2-1) - (3-1) - (1-2) = 4;
  22: 6 - (1-1) - (2-1) - (1-2) - (2-2) = 6;
  211: 6 - (1-1) - (2-1) - (1-2) - (1-3) = 8;
  1111: 6 - (1-1) - (1-2) - (1-3) - (1-4) = 12.
Hence the number of spanning trees is given by (1/4!) * 4^9 * 6^4 * 8^9 * 12^1 = 2^48 * 3^4 = 22799473113563136.
		

Crossrefs

Cf. A117506.

Formula

a(n) = (1/n!) * Product_{lambda} (n*(n-1)/2 - Sum_{(i,j) in lambda} (j-i))^{f_{lambda}^2} where the product ranges over all integer partition lambda of n different from n, and f_{lambda} is the number of standard Young tableaux of shape lambda (see sequence A117506). Furthermore, the partitions are also viewed as their Ferrers shape, for instance, the partition 31 corresponds to the pairs (1,1), (1,2), (1,3) and (2,1).

A291907 Numbers such that the nonzero digits in the base 3 expansion consists of two 1s and one 2.

Original entry on oeis.org

14, 16, 22, 32, 34, 38, 42, 46, 48, 58, 64, 66, 86, 88, 92, 96, 100, 102, 110, 114, 126, 136, 138, 144, 166, 172, 174, 190, 192, 198, 248, 250, 254, 258, 262, 264, 272, 276, 288, 298, 300, 306, 326, 330, 342, 378, 406, 408, 414, 432, 490, 496, 498, 514, 516, 522
Offset: 1

Author

Richard Ehrenborg, Sep 05 2017

Keywords

Comments

If k belongs to this sequence, A060350(k) and A291903(k) are divisible by 3.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DigitCount[#, 3, {1, 2}] == {2, 1} &] (* Amiram Eldar, Apr 07 2022 *)

Formula

A023693 INTERSECT A023699. - R. J. Mathar, Nov 10 2017

A291903 Sums of the fourth powers of the descent set statistics for permutations on n elements.

Original entry on oeis.org

1, 1, 2, 34, 1576, 190216, 46479536, 21246061600, 16505196258944, 20569621110703360, 39048520577674054912, 108556407221350072075840, 427386074980323385950161920, 2317659324414032887611600999424, 16904848426143946143993568391307264, 162490636486997482412425606460112242944, 2021898321663894965658036079204603050491904
Offset: 0

Author

Richard Ehrenborg, Sep 05 2017

Keywords

Examples

			For n=4, we have a(4) = 1^4 + 3^4 + 5^4 + 3^4 + 3^4 + 5^4 + 3^4 + 1^4 = 1576.
		

Crossrefs

Column k=4 of A334622.

Formula

a(n) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^4. - Alois P. Heinz, Sep 15 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 09 2020

A291902 Sums of the cubes of the descent set statistics for permutations on n elements.

Original entry on oeis.org

1, 1, 2, 18, 360, 14460, 994680, 109021500, 17815754880, 4147063256448, 1323985303267200, 562636176102554400, 310405397451855552000, 217731000904433587359360, 190749857434239995742090240, 205540893695782384696324368000, 268793206446238988670401236992000
Offset: 0

Author

Richard Ehrenborg, Sep 05 2017

Keywords

Examples

			For n=4, we have a(4) = 1^3 + 3^3 + 5^5 + 3^3 + 3^3 + 5^3 + 3^3 + 1^3 = 360.
		

Crossrefs

Column k=3 of A334622.

Formula

a(n) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^3. - Alois P. Heinz, Sep 15 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 09 2020

A232864 Number of permutations of n elements not cyclically containing the consecutive pattern 123.

Original entry on oeis.org

1, 1, 2, 3, 12, 45, 234, 1323, 8856, 65529, 543510, 4937031, 49030596, 526930677, 6101871426, 75686176035, 1001517264432, 14079895613937, 209594037600558, 3293305758743679, 54470994630103260, 945988795762018029, 17211193919411902938, 327371367293394753627
Offset: 0

Author

Richard Ehrenborg, Dec 01 2013

Keywords

Examples

			a(4) = 12 comes from the 3 permutations 1324, 1423 and 1432, and by cyclically shifting we obtain 3 * 4 = 12 permutations.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 1), j=1..u))
        end:
    a:= n-> `if`(n=0, 1, n*b(0, n-1, 1)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2013
  • Mathematica
    b[u_,o_,t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 1], {j, 1, u}]];
    a[n_]:= If[n==0, 1, n*b[0, n-1, 1]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 14 2017, after Alois P. Heinz *)

Formula

a(n) = n! * Sum_{k=-oo..oo} (sqrt(3)/(2*Pi*(k+1/3)))^n for n >= 2.
a(n) = A080635(n-1)*n for n>0. - Alois P. Heinz, Dec 01 2013

A227918 Sum over all permutations beginning and ending with ascents, and without double ascents on n elements and each permutation contributes 2 to the power of the number of double descents.

Original entry on oeis.org

1, 0, 5, 22, 137, 956, 7653, 68874, 688745, 7576192, 90914309, 1181886014, 16546404201, 248196063012, 3971137008197, 67509329139346, 1215167924508233, 23088190565656424, 461763811313128485, 9697040037575698182, 213334880826665360009, 4906702259013303280204, 117760854216319278724901
Offset: 2

Author

Richard Ehrenborg, Oct 08 2013

Keywords

Examples

			a(4) = 5 since the sum is over the five permutations 1324, 1423, 2314, 2413 and 3412, and each of them contribute 1 to the sum, since none of them has a double descent.
		

Crossrefs

Programs

  • Mathematica
    a[2] = 1; a[n_] := n*a[n - 1] + 1 + 4 (-1)^n;  Table[a[n], {n, 2, 20}] (* Wesley Ivan Hurt, May 04 2014 *)

Formula

E.g.f.: (exp(x) - 4 + 4*exp(-x))/(1-x) - 1 + 2*x.
Closest integer to (e - 4 + 4/e)*n! for n > 7.
a(n) = n*a(n-1) + 1 + 4*(-1)^n.
Conjecture: a(n) -n*a(n-1) -a(n-2) +(n-2)*a(n-3) = 0. - R. J. Mathar, Jul 17 2014

A230071 Sum over all permutations without double ascents on n elements and each permutation contributes 2 raised to the power of the number of double descents.

Original entry on oeis.org

0, 0, 2, 6, 26, 130, 782, 5474, 43794, 394146, 3941462, 43356082, 520272986, 6763548818, 94689683454, 1420345251810, 22725524028962, 386333908492354, 6954010352862374, 132126196704385106, 2642523934087702122, 55493002615841744562, 1220846057548518380366
Offset: 0

Author

Richard Ehrenborg, Oct 08 2013

Keywords

Examples

			For n=3 the a(3)= 6 since the 4 permutations 132, 213, 231, 312 all contribute 1 and 321 contributes 2 to the sum. Note when n=4, the permutation 4321 contributes 4 since it has two double descents.
G.f. = 2*x^2 + 6*x^3 + 26*x^4 + 130*x^5 + 782*x^6 + 5474*x^7 + 43794*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a := proc(n) if n < 2 then 0 elif n = 2 then 2 else (2-n)*a(n-3)+a(n-2)+n*a(n-1) fi end: seq(a(n), n=0..9); # Peter Luschny, May 30 2014
  • Mathematica
    a[0] = 0; a[n_] := a[n] = n a[n-1] + (-1)^n + 1;
    Array[a, 23, 0] (* Jean-François Alcover, Jul 08 2019, after A080227 *)

Formula

E.g.f.: (exp(x)+exp(-x)-2)/(1-x).
a(n) = closest integer to (e-2+1/e)*n! for n > 3.
a(n) = (2-n)*a(n-3) + a(n-2) + n*a(n-1) for n > 2.
a(n) = 2*A080227(n).
a(n) = sum(0<=kA002627(k)). - Peter Luschny, May 30 2014
0 = a(n)*(+a(n+1) - a(n+2) - 3*a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) + a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) if n>=0. - Michael Somos, May 30 2014

Extensions

a(0) and a(1) prepended, partially edited. - Peter Luschny, May 30 2014

A171462 Number of hands a bartender needs to have in order to win at the blind bartender's problem with n glasses in a cycle.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 6, 4, 6, 8, 10, 8, 12, 12, 12, 8, 16, 12, 18, 16, 18, 20, 22, 16, 20, 24, 18, 24, 28, 24, 30, 16, 30, 32, 30, 24, 36, 36, 36, 32, 40, 36, 42, 40, 36, 44, 46, 32, 42, 40, 48, 48, 52, 36, 50, 48, 54, 56, 58, 48, 60, 60, 54, 32, 60, 60, 66, 64, 66, 60, 70, 48, 72
Offset: 1

Author

Richard Ehrenborg, Dec 09 2009

Keywords

Comments

For n greater than 1, the n-th entry is given by n*(1-1/p) where p is largest prime dividing n.

Examples

			a(4) = 2 since in the classical problem with 4 glasses on a tray, the blind bartender needs 2 hands.
		

References

  • W. T. Laaser and L. Ramshaw, Probing the Rotating Table, The Mathematical Gardner (edited by David A. Klarner), Prindle, Weber & Schmidt, Boston, Massachusetts, 1981, pages 285-307.

Crossrefs

Programs

  • Haskell
    a171462 n = div n p * (p - 1) where p = a006530 n
    -- Reinhard Zumkeller, Apr 06 2015
    
  • Mathematica
    {0}~Join~Array[# (1 - 1/FactorInteger[#][[-1, 1]]) &, 72, 2] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    a(n) = {if (n == 1, return (0)); f = factor(n); p = f[#f~,1]; return (n * (p - 1)/p);} \\ Michel Marcus, Jun 09 2013
    
  • Python
    from sympy import primefactors
    def a(n): return 0 if n == 1 else n - n//(primefactors(n)[-1])
    print([a(n) for n in range(1, 74)]) # Michael S. Branicky, Apr 19 2021

Formula

Conjecture: n > 1: k=1..n: a(n) = -n*min(A191898(n, k)/k). Verified up to n=10000. - Mats Granvik, Apr 19 2021
a(n) = n - A052126(n) = n - n/A006530(n). - Antti Karttunen, Jan 03 2024

A108917 Number of knapsack partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 25, 41, 41, 58, 56, 84, 75, 117, 99, 149, 140, 211, 172, 259, 237, 334, 292, 434, 348, 547, 465, 664, 588, 836, 681, 1014, 873, 1243, 1039, 1502, 1224, 1822, 1507, 2094, 1810, 2605, 2118, 3038, 2516
Offset: 0

Author

Richard Ehrenborg, Jul 20 2005

Keywords

Comments

A knapsack partition is a partition such that for every integer there is at most one way to write it as a sum of a subset of the parts of the partition.
Equivalently, a knapsack partition of n is a multiset of positive integers summing to n such that every distinct submultiset has a different sum. - Gus Wiseman, Oct 03 2015

Examples

			a(4) = 4, since there are 5 partitions of 4 (see sequence A000041) and the partition 211 is the only partition of these that is not knapsack since 2=1+1.
The a(5) = 6 knapsack partitions of 5 are {{5},{3,2},{4,1},{2,2,1},{3,1,1},{1,1,1,1,1}}.
		

Crossrefs

Cf. A000041, A275972 (strict knapsack partitions).

Programs

  • Maple
    g:= proc(n, k) option remember;
    # list of pairs [multiset, generator] of knapsack partitions of n with max part k
    local res, i,p,p2;
    if k = 1 then return [[[n],add(x^i,i=0..n)]] fi;
    res:= NULL;
    for i from 0 to floor(n/k) do
      for p in procname(n-k*i,k-1) do
         p2:= p[2]*add(x^(k*j),j=0..i);
         if max(coeffs(expand(p2))) <= 1 then
            res:= res, [[op(p[1]),i],p2]
         fi
      od
    od;
    [res];
    end proc:
    1, seq(nops(g(n,n)), n=1..60); # Robert Israel, Oct 04 2015
  • Mathematica
    ksQ[ptn_] := UnsameQ @@ Plus @@@ Union[Subsets[ptn]];
    ksAll[n_Integer] :=
      ksAll[n] =
       If[n <= 0, {},
        With[{loe = Array[ksAll, n - 1, 1, Join]},
         Union[{{n}},
          Select[Sort[Append[#, n - Plus @@ #], Greater] & /@ loe, ksQ]]]];
    ksAll[5](*example*)
    Array[Length[ksAll[#]] &, 20](*sequence*) (* Gus Wiseman, Oct 02 2015 *)

A000698 A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.

Original entry on oeis.org

1, 1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, 12277827850, 285764591114, 7213364729026, 196316804255522, 5731249477826890, 178676789473121834, 5925085744543837186, 208256802758892355202, 7734158085942678174730
Offset: 0

Keywords

Comments

Also number of nonisomorphic unlabeled connected Feynman diagrams of order 2n-2 for the electron propagator of quantum electrodynamics (QED), including vanishing diagrams. [Corrected by Charles R Greathouse IV, Jan 24 2014][Clarified by Robert Coquereaux, Sep 14 2014]
a(n+1) is the moment of order 2*n for the probability density function rho(x) = (1/sqrt(2*Pi))*exp(x^2/2)/[(u(x))^2+Pi/2], with u(x) = Integral_{t=0..x} exp(t*t/2) dt, on the real interval -infinity..infinity. - Groux Roland, Jan 13 2009
Starting (1, 2, 10, 74, ...) = INVERTi transform of A001147: (1, 3, 15, 105, ...). - Gary W. Adamson, Oct 21 2009
The Cvitanovic et al. paper relates this sequence to A005411 and A005413. - Robert Munafo, Jan 24 2010
Hankel transform of a(n+1) is A168467. - Paul Barry, Nov 26 2009
a(n) = number of labeled Dyck (n-1)-paths (A000108) in which each vertex that terminates an upstep is labeled with an integer i in [0,h], where h is the height of the vertex . For example UDUD contributes 4 labeled paths--0D0D, 0D1D, 1D0D, 1D1D where upsteps are replaced by their labels--and UUDD contributes 6 labeled paths to a(3)=10. The Deléham (Mar 24 2007) formula below counts these labeled paths by number of "0" labels. - David Callan, Aug 23 2011
a(n) is the number of indecomposable perfect matchings on [2n]. A perfect matching on [2n] is decomposable if a nonempty subset of the edges forms a perfect matching on [2k] for some kDavid Callan, Nov 29 2012
From Robert Coquereaux, Sep 12 2014: (Start)
QED diagrams are graphs with two kinds of edges (lines): a (non-oriented), f (oriented), and only one kind of (internal) vertex: aff. They may have internal and external (i.e., pendant) lines. The order is the number of (internal) vertices. Vanishing diagrams: QED diagrams containing loops of type f with an odd number of vertices are set to 0 (Furry theorem). Proper diagrams: connected QED diagrams that remain connected when an arbitrary internal line is cut.
The number of Feynman diagrams of order 2n for the electron propagator (2-point function of QED), vanishing or not, proper or not, of order 2n, starting from n = 0, is given by 1, 2, 10, 74, 706, 8162, ..., i.e., this sequence A000698, with the first term (equal to 1) dropped. Call Sf the associated g.f.
The number of non-vanishing Feynman diagrams, for the same 2-point function, is given by 1, 1, 4, 25, 208, 2146, ..., i.e., by the sequence A005411, with a first term of order 0, equal to 1, added. Call S the associated g.f.
If one does not remove the vanishing diagram, but, at the same time, considers only those graphs that are proper, one obtains the Feynman diagrams (vanishing and non-vanishing) for the self-energy function of QED, 0, 1, 3, 21, 207, 2529, ..., i.e., the sequence A115974 with a first term of order 0, equal to 0, added. A115974 is twice A167872. Call Sigmaf the associated g.f.
If one removes the vanishing diagrams and, at the same time, considers only those graphs that are proper, one obtains the Feynman diagrams for the self-energy function of QED given by 0, 1, 3, 18, 153, 1638, ..., i.e., by the sequence A005412, with a first term of order 0, equal to 0, added. Call Sigma the associated g.f.
Then Sf = 1/(1-Sigmaf) and S = 1/(1-Sigma). (End)
For n>0 sum over all Dyck paths of semilength n-1 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - Alois P. Heinz, May 22 2015
Also, counts certain isomorphism classes of closed normal linear lambda terms. [N. Zeilberger, 2015]. - N. J. A. Sloane, Sep 18 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
For n >= 2, a(n) is the number of coalescent histories for a pair consisting of a matching lodgepole gene tree and species tree with 2n-1 leaves. - Noah A Rosenberg, Jun 21 2022

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 74*x^4 + 706*x^5 + 8162*x^6 + 110410*x^7 + ...
		

References

  • Dubois C., Giorgetti A., Genestier R. (2016) Tests and Proofs for Enumerative Combinatorics. In: Aichernig B., Furia C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science, vol 9762. Springer.
  • R. W. Robinson, Counting irreducible Feynman diagrams exactly and asymptotically, Abstracts Amer. Math. Soc., 2002, #975-05-270.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=1 of A258219, A258222.
Row sums of A322398.

Programs

  • Maple
    A006882 := proc(n) option remember; if n <= 1 then 1 else n*procname(n-2); fi; end;
    A000698:=proc(n) option remember; global df; local k; if n=0 then RETURN(1); fi; A006882(2*n-1) - add(A006882(2*k-1)*A000698(n-k),k=1..n-1); end;
    A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end; # R. J. Mathar, Apr 24 2006
    # alternative Maple program:
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> `if`(n=0, 1, b(2*n-2, 0, false)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 23 2015
    a_list := proc(len) local n, A; if len=1 then return [1] fi: A := Array(-1..len-2); A[-1] := 1; A[0] := 1; for n to len-2 do A[n] := (2*n-1)*A[n-1]+add(A[j]*A[n-j-1], j=0..n-1) od: convert(A, list) end: a_list(20); # Peter Luschny, Jul 18 2017
  • Mathematica
    a[n_] := a[n] = (2n - 1)!! - Sum[ a[n - k](2k - 1)!!, {k, n-1}]; Array[a, 18, 0] (* Ignacio D. Peixoto, Jun 23 2006 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 2 - 1 / Sum[ (2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Nov 16 2011 *)
    a[n_]:= SeriesCoefficient[1+x(1/x+(E^((1/2)/x) Sqrt[2/\[Pi]] Sqrt[-(1/x)])/Erfc[Sqrt[-(1/x)]/Sqrt[2]]), {x,0,n}, Assumptions -> x >0](* Robert Coquereaux, Sep 14 2014 *)
    max = 20; g = t/Fold[1 - ((t + #2)*z)/#1 &, 1, Range[max, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; a[0] = 1; a[n_] := Sum[T[n-1, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016, after Philippe Deléham *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 - 1 / sum( k=0, n, x^k * (2*k)! /(2^k * k!), x * O(x^n)), n))}; /* Michael Somos, Feb 08 2011 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy import factorial2, cacheit
    @cacheit
    def a(n): return 1 if n == 0 else factorial2(2*n - 1) - sum(factorial2(2*k - 1)*a(n - k) for k in range(1, n))
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 18 2017

Formula

G.f.: 2 - 1/(1 + Sum_{n>=1} (2*n-1)!! * x^n ).
a(n+1) = Sum_{k=0..n} A089949(n, k)*2^k. - Philippe Deléham, Aug 15 2005
a(n+1) = Sum_{k=0..n} A053979(n,k). - Philippe Deléham, Mar 24 2007
From Paul Barry, Nov 26 2009: (Start)
G.f.: 1+x/(1-2x/(1-3x/(1-4x/(1-5x/(1-6x/(1-... (continued fraction).
G.f.: 1+x/(1-2x-6x^2/(1-7x-20x^2/(1-11x-42x^2/(1-15x-72x^2/(1-19x-110x^2/(1-... (continued fraction). (End)
G.f.: 1 + x * B(x) * C(x) where B(x) is the g.f. for A001147 and C(x) is the g.f. for A005416. - Michael Somos, Feb 08 2011
G.f.: 1+x/W(0); where W(k)=1+x+x*2k-x*(2k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
From Peter Bala, Dec 22 2011: (Start)
Recurrence relation: a(n+1) = (2*n-1)*a(n) + Sum_{k = 1..n} a(k)*a(n+1-k) for n >= 0 and a(1) = 1.
The o.g.f. B(x) = Sum_{n>=1} a(n)*x^(2*n-1) = x + 2*x^3 + 10*x^5 + 74*x^7 + ... satisfies the Riccati differential equation y'(x) = -1/x^2 + (1/x^3)*y(x) - (1/x^2)*y(x)^2 with initial condition y(0) = 0 (cf. A005412). The solution is B(x) = 1/z(x) + 1/x, where z(x) = -Sum_{n>=0} A001147(n) * x^(2*n+1) = -(x + x^3 + 3*x^5 + 15*x^7 + ...). The function b(x) = -B(1/x) satisfies b'(x) = -1 - (x + b(x))*b(x). Hence the differential operator (D^2 + x*D + 1), where D = d/dx, factorizes as (D - a(x))*(D - b(x)), where a(x) = -(x + b(x)), as conjectured by [Edgar, Problem 4.32]. For a refinement of this sequence see A053979. (End)
From Sergei N. Gladkovskii, Aug 19 2012, Oct 24 2012, Mar 19 2013, May 20 2013, May 29 2013, Aug 04 2013, Aug 05 2013: (Start)
Continued fractions:
G.f.: 2 - G(0) where G(k) = 1 - (k+1)*x/G(k+1).
G.f.: 2 - U(0) where U(k) = 1 - (2*k+1)*x/(1 - (2*k+2)*x/U(k+1)).
G.f.: 2 - U(0) where U(k) = 1 - (4*k+1)*x - (2*k+1)*(2*k+2)*x^2/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 - x*(2*k+2)/(1 - x*(2*k+3)/Q(k+1)).
G.f.: 1 + x/Q(0) where Q(k) = 1 - x*(k+2)/Q(k+1).
G.f.: 2 - G(0)/2 where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+2)/ G(k+1))).
G.f.: 1 + x*G(0) where G(k) = 1 - x*(k+2)/(x*(k+2) - 1/G(k+1)).
G.f.: 2 - 1/B(x) where B(x) is the g.f. of A001147.
G.f.: 1 + x/(1-2*x*B(x)) where B(x) is the g.f. of A167872. (End)
a(n) ~ 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 10 2014
G.f.: 1 + x*(1/x + (sqrt(2/Pi) * exp(1/(2*x)) * sqrt(-1/x))/Erfc(sqrt(-1/x)/sqrt(2))) where Erfc(z) = 1 - Erf(z) is the complementary error function, and Erf(z) is the integral of the Gaussian distribution. This generating function is obtained from the generating functional of (4-dimensional) QED, evaluated in dimension 0 for the 2-point function, without the modification implementing Furry theorem. - Robert Coquereaux, Sep 14 2014
From Peter Bala, May 23 2017: (Start)
G.f. A(x) = 1 + x/(1 + x - 3*x/(1 + 3*x - 5*x/(1 + 5*x - 7*x/(1 + 7*x - ...)))).
A(x) = 1 + x/(1 + x - 3*x/(1 - 2*x/(1 - 5*x/(1 - 4*x/(1 - 7*x/(1 - 6*x/(1 - ...))))))). (End)

Extensions

Formula corrected by Ignacio D. Peixoto, Jun 23 2006
More terms from Sean A. Irvine, Feb 27 2011