cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Munafo

Robert Munafo's wiki page.

Robert Munafo has authored 59 sequences. Here are the ten most recent ones:

A278835 Prime factors (counting multiplicity) of 10^10^10^10^2 - 1.

Original entry on oeis.org

3, 3, 11, 17, 41, 73, 101, 137, 251, 257, 271, 353, 401, 449, 641, 751, 1201, 1409, 1601, 3541, 4001, 4801, 5051, 9091, 10753, 15361, 16001, 19841, 21001, 21401, 24001, 25601, 27961, 37501, 40961, 43201, 60101, 62501, 65537, 69857, 76001, 76801, 160001, 162251, 163841, 307201, 453377, 524801, 544001, 670001, 952001, 976193, 980801
Offset: 1

Author

Keywords

Comments

From Jon E. Schoenfield, Dec 02 2016, paraphrasing information from the Munafo link: (Start)
The decimal expansion of 10^10^10^10^2 - 1 would be 1 googolplex digits long, with each digit a 9. Many factors of this number can be identified using simple facts of modular arithmetic.
Since its digits are all 9's, it is divisible by 9=3*3. Since its digits are all 9's and the number of digits is even, it is divisible by 99 (as are 9999=99*101, 999999=99*10101, 99999999=99*1010101, etc.), and thus divisible by 11.
By the same principle, it is divisible by 9999, 99999, 99999999, and by any other number whose decimal expansion consists of k 9's where k is of the form 2^a * 5^b, where a and b are nonnegative integers up to 10^100 (see A003592) and all their divisors. Additional factors can be found using Fermat's Little Theorem.
Consequently, a large number of factors of 10^10^10^10^2 - 1 are known. (End)

Examples

			10^10^10^10^2 - 1 = 10^10^10^100 - 1 = 999...999 (a total of a googolplex of nines).
		

Crossrefs

Cf. A227246.

A272853 Ramanujan's alpha-series.

Original entry on oeis.org

9, 791, 65601, 5444135, 451797561, 37493753471, 3111529740489, 258219474707159, 21429104870953665, 1778357484814447079, 147582242134728153849, 12247547739697622322431
Offset: 0

Author

Robert Munafo, May 08 2016

Keywords

Comments

Ramanujan's notes define this by the same G.f. as A051028 (the a-series) but using Laurent series expansion. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).

Examples

			a(3)=5444135 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Normal@ Series[(1 + 53*a + 9*a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 20}], 1/a] (* Giovanni Resta, May 08 2016 *)

Formula

G.f.: (9+53*x+x^2)/(1-82*x-82*x^2+x^3).
a(-3)=-11161; a(-2)=-135; a(-1)=-1; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.

A272854 Ramanujan's beta-series.

Original entry on oeis.org

10, 812, 67402, 5593538, 464196268, 38522696690, 3196919629018, 265305806511788, 22017185020849402, 1827161050923988562, 151632350041670201260, 12583657892407702716002
Offset: 0

Author

Robert Munafo, May 08 2016

Keywords

Comments

Ramanujan's notes define this by the same G.f. as A051030 (the c-series) but using Laurent series expansion. It is mislabeled as "gamma" in Ramanujan's notes. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).

Examples

			a(3)=5593538 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[ Normal@Series[-(2 + 8*x - 10*x^2)/(1 - 82*x - 82*x^2 + x^3), {x, Infinity, 20}], 1/x] (* Giovanni Resta, May 08 2016 *)

Formula

G.f.: (10-8*x-2*x^2)/(1-82*x-82*x^2+x^3).
a(-3)=14258; a(-2)=172; a(-1)=2; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.

A272855 Ramanujan's gamma-series.

Original entry on oeis.org

12, 1010, 83802, 6954572, 577145658, 47896135058, 3974802064140, 329860675188578, 27374461238587818, 2271750422127600332, 188527910575352239722, 15645544827332108296610
Offset: 0

Author

Robert Munafo, May 08 2016

Keywords

Comments

Ramanujan's notes define this by the same G.f. as A051029 (the b-series) but using Laurent series expansion. It is mislabeled as "beta" in Ramanujan's notes. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).

Examples

			a(3)=6954572 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[ Normal@ Series[-1*(2 - 26 a - 12 a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 10}], 1/a] (* Giovanni Resta, May 08 2016 *)

Formula

G.f.: x*(12+26*x-2*x^2)/(1-82*x-82*x^2+x^3).
a(-3)=11468; a(-2)=138; a(-1)=2; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.

A244059 Initial digit of the decimal expansion of n^(n^(n^n)) or n^^4 (in Don Knuth's up-arrow notation).

Original entry on oeis.org

1, 1, 6, 1, 2, 1, 4, 7, 6, 2, 1
Offset: 0

Author

Keywords

Comments

This sequence can also be written as (n↑↑4) in Knuth up-arrow notation.
0^^4 = 1 since 0^^k = 1 for even k, 0 for odd k, k >= 0.
Conjecture: the distribution of the initial digits obey G. K. Zipf's law.

Examples

			a(4)=2 because A241293(1)=2.
		

Crossrefs

Programs

A241299 Initial digit of the decimal expansion of n^(n^n) or n^^3 (in Don Knuth's up-arrow notation).

Original entry on oeis.org

0, 1, 1, 7, 1, 1, 2, 3, 6, 4, 1, 3, 4, 6, 1, 3, 1, 3, 1, 1, 3, 2, 3, 5, 5, 2, 2, 2, 8, 1, 1, 9, 1, 2, 3, 4, 8, 2, 4, 1, 1, 2, 8, 3, 2, 1, 4, 2, 5, 1, 6, 7, 2, 2, 2, 2, 2, 2, 8, 4, 1, 4, 8, 1, 5, 8, 4, 1, 4, 1, 2, 1, 9, 6, 6, 2, 1, 1, 7, 6, 1, 7, 7, 2, 4, 1, 8, 6, 1, 7, 1, 1, 3, 1, 2, 6, 3, 5, 1, 1, 1, 2, 2, 5, 4
Offset: 0

Author

Keywords

Comments

0^^3 = 0 since 0^^k = 1 for even k, 0 for odd k, k >= 0.
Conjecture: the distribution of the initial digits obey Zipf's law.
The distribution of the first 1000 terms beginning with 1: 302, 196, 124, 91, 72, 46, 71, 53, 45.

Examples

			a(0) = 0, a(1) = 1, a(2) = 1 because 2^(2^2) = 16, a(3) = 7 because 3^(3^3) = 7625597484987 and its initial digit is 7, etc.
		

Programs

  • Mathematica
    g[n_] := Quotient[n^p, 10^(Floor[ p*Log10@ n] - (1004 + p))]; f[n_] := Block[{p = n}, Quotient[ Nest[ g@ # &, p, p], 10^(1004 + p)]]; Array[f, 105, 0]

Formula

For n > 0, a(n) = floor(t/10^floor(log_10(t))) where t = n^(n^n).
a(n) = A000030(A002488(n)). - Omar E. Pol, Jul 04 2019

A241298 Decimal expansion of 9^(9^9) = 9^^3.

Original entry on oeis.org

4, 2, 8, 1, 2, 4, 7, 7, 3, 1, 7, 5, 7, 4, 7, 0, 4, 8, 0, 3, 6, 9, 8, 7, 1, 1, 5, 9, 3, 0, 5, 6, 3, 5, 2, 1, 3, 3, 9, 0, 5, 5, 4, 8, 2, 2, 4, 1, 4, 4, 3, 5, 1, 4, 1, 7, 4, 7, 5, 3, 7, 2, 3, 0, 5, 3, 5, 2, 3, 8, 8, 7, 4, 7, 1, 7, 3, 5, 0, 4, 8, 3, 5, 3, 1, 9, 3, 6, 6, 5, 2, 9, 9, 4, 3, 2, 0, 3, 3, 3, 7, 5, 0, 6, 0
Offset: 369693100

Author

Keywords

Comments

Decimal expansion of 3^774840978. - Jianing Song, Sep 15 2019

Examples

			= 42812477317574704803698711593056352133905548224144
  35141747537230535238874717350483531936652994320333
  ... (369,692,900 digits omitted) ...
  26170043150602250406601961656994397543610268552663
  74036682906190174923494324178799359681422627177289.
The first and last 100 digits are shown above, with the intervening digits omitted.
The final one hundred digits were computed using PowerMod[9, 9^9, 10^100].
		

References

  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[9, 9^9] (* or *)
    f[n_] := Quotient[n^9, 10^(Floor[9*Log10@ n] - 1010)]; Nest[ f@ # &, 9, 9]

Formula

9^(9^9) = ((((((((9^9)^9)^9)^9)^9)^9)^9)^9)^9.

Extensions

Keyword: fini added by Jianing Song, Sep 18 2019

A241296 Decimal expansion of 7^(7^(7^7)) = 7^^4.

Original entry on oeis.org

7, 8, 3, 3, 0, 0, 5, 2, 3, 7, 4, 8, 0, 0, 5, 5, 5, 6, 5, 4, 0, 3, 8, 5, 4, 0, 9, 4, 7, 5, 4, 6, 5, 3, 0, 8, 2, 9, 1, 9, 0, 4, 4, 3, 9, 8, 5, 5, 8, 7, 7, 0, 1, 3, 1, 4, 8, 2, 1, 1, 9, 7, 0, 3, 1, 8, 5, 0, 2, 8, 4, 3, 6, 3, 3, 9, 7, 2, 6, 3, 4, 4, 4, 4, 2, 9, 7, 2, 3, 3, 8, 2, 8, 9, 4, 1, 0, 0, 4, 5, 1, 7, 7, 8, 7
Offset: 1

Author

Keywords

Comments

The offset is 1 because the true offset would be 3.177419493... * 10^695974, which is too large to be represented properly in the OEIS.

Examples

			7833005237480055565403854094754653082919044398558770131482119703185028436339726344442972338289410045...(3.177419493... * 10^695974)...1766659134033863120639301828875443004447501140571853058472378511366058254036038182879357182733172343.
The above line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis.
The final one hundred digits where computed by: PowerMod[7, 7^7^7, 10^100].
		

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 7, 7^7^7]

Formula

7^(7^(7^7)) = ((((( ... 823532 ... (((((7^7)^7)^7)^7)^7) ... 823532 ... ^7)^7)^7)^7)^7)^7.

Extensions

Keyword: fini added by Jianing Song, Sep 18 2019

A241295 Decimal expansion of 6^(6^(6^6)) = 6^^4.

Original entry on oeis.org

4, 4, 4, 6, 2, 3, 5, 1, 9, 0, 2, 3, 6, 9, 3, 4, 6, 9, 7, 5, 2, 5, 6, 5, 8, 2, 2, 2, 8, 2, 9, 2, 0, 0, 1, 5, 4, 0, 5, 7, 9, 4, 1, 4, 5, 4, 2, 4, 6, 3, 9, 6, 6, 3, 4, 2, 7, 8, 2, 6, 1, 5, 6, 9, 4, 4, 6, 3, 1, 4, 6, 6, 9, 7, 2, 3, 2, 2, 9, 7, 7, 5, 8, 4, 9, 2, 9, 4, 3, 0, 5, 0, 4, 8, 2, 1, 9, 1, 9, 3, 2, 6, 3, 7, 4
Offset: 1

Author

Keywords

Comments

The offset is 1 because the true offset would be 2.069197376... * 10^36305, which is too large to be represented properly in the OEIS.

Examples

			4446235190236934697525658222829200154057941454246396634278261569446314669723229775849294305048219193...(2.069197376... * 10^36305)...1753131067593004473155552781300975310520790674421755277191077815819279193580406457883859420138438656.
The above line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis.
The final one hundred digits where computed by: PowerMod[6, 6^6^6, 10^100].
		

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 6, 6^6^6] (* Program fixed by Jianing Song, Sep 18 2019 *)

Formula

6^(6^(6^6)) = ((((( ... 46645 ... (((((6^6)^6)^6)^6)^6) ... 46645 ... ^6)^6)^6)^6)^6)^6.

Extensions

Keyword: fini added by Jianing Song, Sep 18 2019

A241294 Decimal expansion of 5^(5^(5^5)) = 5^^4.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 8, 8, 0, 8, 1, 7, 9, 9, 9, 7, 4, 4, 5, 2, 8, 6, 1, 7, 8, 2, 7, 4, 1, 8, 6, 0, 5, 7, 5, 4, 5, 1, 6, 7, 3, 4, 6, 5, 2, 0, 5, 9, 6, 2, 7, 2, 1, 5, 4, 7, 3, 3, 3, 8, 6, 7, 4, 5, 2, 2, 5, 1, 9, 6, 5, 5, 4, 8, 3, 3, 7, 4, 0, 1, 8, 4, 7, 3, 5, 2, 0, 9, 9, 4, 0, 1, 8, 1, 1, 0, 5, 7, 3, 6, 4, 3, 5, 0, 9
Offset: 1

Author

Keywords

Comments

The offset is 1 because the true offset would be 1.335740484... * 10^2184, which is too large to be represented properly in the OEIS.

Examples

			1111028808179997445286178274186057545167346520596272154733386745225196554833740184735209940181105736...(1.335740484... * 10^2184)...3293393812245587348839009777160541868907233602002347435809721798438687301313620992004871368408203125.
The above line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis.
The final one hundred digits where computed by: PowerMod[5, 5^5^5, 10^100].
		

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 5, 5^5^5] (* or *)
    p = 5; f[n_] := Quotient[n^p, 10^(Floor[p * Log10@ n] - (1004 + p^p))]; IntegerDigits@ Quotient[ Nest[ f@ # &, p, p^p], 10^(900 + p^p)]

Formula

5^(5^(5^5)) = ((((( ... 3114 ... (((((5^5)^5)^5)^5)^5) ... 3114 ... ^5)^5)^5)^5)^5)^5.

Extensions

Keyword: fini added by Jianing Song, Sep 18 2019