A241299 Initial digit of the decimal expansion of n^(n^n) or n^^3 (in Don Knuth's up-arrow notation).
0, 1, 1, 7, 1, 1, 2, 3, 6, 4, 1, 3, 4, 6, 1, 3, 1, 3, 1, 1, 3, 2, 3, 5, 5, 2, 2, 2, 8, 1, 1, 9, 1, 2, 3, 4, 8, 2, 4, 1, 1, 2, 8, 3, 2, 1, 4, 2, 5, 1, 6, 7, 2, 2, 2, 2, 2, 2, 8, 4, 1, 4, 8, 1, 5, 8, 4, 1, 4, 1, 2, 1, 9, 6, 6, 2, 1, 1, 7, 6, 1, 7, 7, 2, 4, 1, 8, 6, 1, 7, 1, 1, 3, 1, 2, 6, 3, 5, 1, 1, 1, 2, 2, 5, 4
Offset: 0
Examples
a(0) = 0, a(1) = 1, a(2) = 1 because 2^(2^2) = 16, a(3) = 7 because 3^(3^3) = 7625597484987 and its initial digit is 7, etc.
Links
- Robert P. Munafo and Robert G. Wilson v, Table of n, a(n) for n = 0..1000
- Cut the Knot.org, Benford's Law and Zipf's Law, A. Bogomolny, Zipf's Law, Benford's Law from Interactive Mathematics Miscellany and Puzzles.
- Hans Havermann, Next 5 terms.
- M. E. J. Newman, Power laws, Pareto distributions and Zipf's law.
- Eric Weisstein's World of Mathematics, Joyce Sequence.
- Wikipedia, Knuth's up-arrow notation.
- Wikipedia, Zipf's law.
- Index entries for sequences related to Benford's law.
Crossrefs
Programs
-
Mathematica
g[n_] := Quotient[n^p, 10^(Floor[ p*Log10@ n] - (1004 + p))]; f[n_] := Block[{p = n}, Quotient[ Nest[ g@ # &, p, p], 10^(1004 + p)]]; Array[f, 105, 0]
Formula
For n > 0, a(n) = floor(t/10^floor(log_10(t))) where t = n^(n^n).
Comments