A026671
Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).
Original entry on oeis.org
1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027
Offset: 0
- L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Jean-Christophe Aval, Adrien Boussicault and Sandrine Dasse-Hartaut, The tree structure in staircase tableaux, arXiv:1109.4907 [math.CO], 2011-2013.
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
- Miklos Bona, The permutation classes equinumerous to the smooth class, Electron. J. Combin., 5 (1998), no. 1, Research Paper 31, 12 pp.
- David Callan and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv:1602.05182 [math.CO], 2016.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Huyile Liang, Jeffrey Remmel and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 16.
a(n) = T(2n-1, n-1), T given by
A026736.
a(n) = T(2n, n), T given by
A026670.
a(n) = T(2n+1, n+1), T given by
A026725.
-
a:=[3,11,43];; for n in [4..30] do a[n]:=(2*(4*n-3)*a[n-1] - 3*(5*n-8)*a[n-2] - 2*(2*n-3)*a[n-3])/n; od; Concatenation([1], a); # G. C. Greubel, Jul 16 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019
-
Table[SeriesCoefficient[1/(Sqrt[1-4*x]-x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
{a(n)= if(n<0, 0, polcoeff( 1/(sqrt(1 -4*x +x*O(x^n)) -x), n))} /* Michael Somos, Apr 20 2007 */
-
my(x='x+O('x^66)); Vec( 1/(sqrt(1-4*x)-x) ) \\ Joerg Arndt, May 04 2013
-
(1/(sqrt(1-4*x)-x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
A098615
G.f. A(x) satisfies: A(x*G(x)) = G(x), where G(x) is the g.f. for A098614(n) = Fibonacci(n+1)*Catalan(n).
Original entry on oeis.org
1, 1, 3, 5, 13, 25, 61, 125, 295, 625, 1447, 3125, 7151, 15625, 35491, 78125, 176597, 390625, 880125, 1953125, 4390901, 9765625, 21920913, 48828125, 109486993, 244140625, 547018941, 1220703125, 2733608905, 6103515625, 13662695645, 30517578125, 68294088535, 152587890625, 341399727335, 762939453125, 1706739347095, 3814697265625, 8532741458075, 19073486328125, 42660172763995, 95367431640625
Offset: 0
- Paul D. Hanna, Table of n, a(n) for n = 0..300
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, example 30.
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (x+Sqrt(1-4*x^2))/(1-5*x^2) )); // G. C. Greubel, Jul 31 2024
-
Array[Sum[Binomial[(# - 1)/2, (# - k)/2]*2^(# - k - 1)*((-1)^(# - k) + 1), {k, 0, #}] &, 42, 0] (* or *)
CoefficientList[Series[(Sqrt[1 - 4 x^2] + x)/(1 - 5 x^2), {x, 0, 41}], x] (* Michael De Vlieger, May 20 2021 *)
-
a(n):=sum(binomial((n-1)/2,(n-k)/2)*2^(n-k-1)*((-1)^(n-k)+1),k,0,n); /* Vladimir Kruchinin, Apr 16 2011 */
-
{ a(n) = polcoeff((sqrt(1-4*x^2+x^2*O(x^n))+x)/(1-5*x^2),n) }
for(n=0,50,print1(a(n),", "))
-
def A098615_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (x+sqrt(1-4*x^2))/(1-5*x^2) ).list()
A098615_list(30) # G. C. Greubel, Jul 31 2024
A054336
A convolution triangle of numbers based on A001405 (central binomial coefficients).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 6, 10, 9, 4, 1, 10, 22, 22, 14, 5, 1, 20, 44, 54, 40, 20, 6, 1, 35, 93, 123, 109, 65, 27, 7, 1, 70, 186, 281, 276, 195, 98, 35, 8, 1, 126, 386, 618, 682, 541, 321, 140, 44, 9, 1, 252, 772, 1362, 1624, 1440, 966, 497, 192, 54, 10, 1
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 3 + 5*x + 3*x^2 + x^3.
From _Paul Barry_, Oct 21 2010: (Start)
Triangle begins
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
6, 10, 9, 4, 1;
10, 22, 22, 14, 5, 1;
20, 44, 54, 40, 20, 6, 1;
35, 93, 123, 109, 65, 27, 7, 1;
Production matrix is
1, 1;
1, 1, 1;
-1, 1, 1, 1;
1, -1, 1, 1, 1;
-1, 1, -1, 1, 1, 1;
1, -1, 1, -1, 1, 1, 1;
-1, 1, -1, 1, -1, 1, 1, 1;
1, -1, 1, -1, 1, -1, 1, 1, 1;
-1, 1, -1, 1, -1, 1, -1, 1, 1, 1; (End)
-
A053121:= function(n,k)
if ((n-k+1) mod 2)=0 then return 0;
else return (k+1)*Binomial(n+1, Int((n-k)/2))/(n+1);
fi;
end;
T:= function(n,k)
return Sum([k..n], j-> Binomial(j,k)*A053121(n,j));
end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 21 2019
-
A053121:= func< n,k | ((n-k+1) mod 2) eq 0 select 0 else (k+1)*Binomial(n+1, Floor((n-k)/2))/(n+1) >;
T:= func< n,k | (&+[Binomial(j,k)*A053121(n,j): j in [k..n]]) >;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 21 2019
-
c[n_, j_] /; n < j || OddQ[n - j] = 0; c[n_, j_] = (j + 1) Binomial[n + 1, (n - j)/2]/(n + 1); t[n_, k_] := Sum[c[n, j]*Binomial[j, k], {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[;; 66]] (* Jean-François Alcover, Jul 13 2011, after Philippe Deléham *)
-
A053121(n,k) = if((n-k+1)%2==0, 0, (k+1)*binomial(n+1, (n-k)\2)/(n+1) );
T(n,k) = sum(j=k,n, A053121(n,j)*binomial(j,k));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 21 2019
-
def A053121(n, k):
if (n-k+1) % 2==0: return 0
else: return (k+1)*binomial(n+1, ((n-k)//2))/(n+1)
def T(n,k): return sum(binomial(j,k)*A053121(n,j) for j in (k..n))
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 21 2019
A054337
7-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 28, 448, 5376, 53760, 473088, 3784704, 28114944, 196804608, 1312030720, 8396996608, 51908706304, 311452237824, 1820797698048, 10404558274560, 58265526337536, 320460394856448, 1734256254517248, 9249366690758656, 48680877319782400, 253140562062868480
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+6,6)); # G. C. Greubel, Jul 21 2019
-
[4^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-6), j =i-6), i=6..36); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+6,6)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
Table[4^n*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Jul 21 2019 *)
-
vector(30, n, n--; 4^n*binomial(n+6,6) ) \\ G. C. Greubel, Jul 21 2019
-
[lucas_number2(n, 4, 0)*binomial(n,6)/2^12 for n in range(6, 36)] # Zerinvary Lajos, Mar 11 2009
A104624
Expansion of exp( arcsinh( -2*x ) ) in powers of x.
Original entry on oeis.org
1, -2, 2, 0, -2, 0, 4, 0, -10, 0, 28, 0, -84, 0, 264, 0, -858, 0, 2860, 0, -9724, 0, 33592, 0, -117572, 0, 416024, 0, -1485800, 0, 5348880, 0, -19389690, 0, 70715340, 0, -259289580, 0, 955277400, 0, -3534526380, 0, 13128240840, 0, -48932534040, 0, 182965127280, 0, -686119227300, 0
Offset: 0
G.f. = 1 - 2*x + 2*x^2 - 2*x^4 + 4*x^6 - 10*x^8 + 28*x^10 - 84*x^12 + 264*x^14 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3091.
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Exp(Argsinh(-2*x)))); // G. C. Greubel, Aug 12 2018
-
s := proc(n) option remember; `if`(n<2, n+1, 4*(n-2)*s(n-2)/(n+1)) end: A104624 := n -> `if`(n<2, (-1)^n*(n+1), (-1)^(n/2-1)*s(n-1)); seq(A104624(n), n=0..47); # Peter Luschny, Sep 23 2014
-
CoefficientList[ Series[ Exp[ ArcSinh[ -2x]], {x, 0, 49}], x]
Table[(-1)^n 2 HypergeometricPFQ[{-n+1, 2-n}, {2}, -1], {n, 0, 46}] (* Peter Luschny, Sep 23 2014 *)
-
{a(n) = if( n<0, 0, polcoeff( sqrt( 1 + 4*x^2 + x*O(x^n) ) - 2*x, n ) )}; /* Michael Somos, Jan 14 2011 */
-
def A104624(n):
if n < 2: return (-1)^n*(n+1)
if n % 2 == 1: return 0
return (-1)^(n/2+1)*binomial(n,n/2)/(n-1)
[A104624(n) for n in range(47)] # Peter Luschny, Sep 23 2014
A111959
Renewal array for aerated central binomial coefficients.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 6, 0, 6, 0, 1, 0, 16, 0, 8, 0, 1, 20, 0, 30, 0, 10, 0, 1, 0, 64, 0, 48, 0, 12, 0, 1, 70, 0, 140, 0, 70, 0, 14, 0, 1, 0, 256, 0, 256, 0, 96, 0, 16, 0, 1, 252, 0, 630, 0, 420, 0, 126, 0, 18, 0, 1, 0, 1024, 0, 1280, 0, 640, 0, 160, 0, 20, 0, 1, 924, 0, 2772, 0
Offset: 0
From _Peter Bala_, Aug 13 2021: (Start)
Triangle begins
1;
0, 1;
2, 0, 1;
0, 4, 0, 1;
6, 0, 6, 0, 1;
0, 16, 0, 8, 0, 1;
Infinitesimal generator begins
0;
0, 0;
2, 0, 0;
0, 4, 0, 0;
0, 0, 6, 0, 0;
0, 0, 0, 8, 0, 0; (End)
A054338
8-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 32, 576, 7680, 84480, 811008, 7028736, 56229888, 421724160, 2998927360, 20392706048, 133479530496, 845370359808, 5202279137280, 31213674823680, 183120225632256, 1052941297385472, 5946021444059136, 33033452466995200, 180814687187763200, 976399310813921280
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (32,-448,3584,-17920,57344,-114688,131072,-65536).
-
List([0..20], n-> 4^n*Binomial(n+7,7) ); # G. C. Greubel, Jul 21 2019
-
[4^n*Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 15 2011
-
seq(binomial(n+7,7)*4^n,n=0..20); # Zerinvary Lajos, Jun 23 2008
-
Table[4^n*Binomial[n+7,7], {n,0,20}] (* G. C. Greubel, Jul 21 2019 *)
LinearRecurrence[{32,-448,3584,-17920,57344,-114688,131072,-65536},{1,32,576,7680,84480,811008,7028736,56229888},30] (* Harvey P. Dale, Jun 08 2025 *)
-
vector(20, n, n--; 4^n*binomial(n+7,7)) \\ G. C. Greubel, Jul 21 2019
A054339
9-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 36, 720, 10560, 126720, 1317888, 12300288, 105431040, 843448320, 6372720640, 45883588608, 317013884928, 2113425899520, 13655982735360, 85837605765120, 526470648692736, 3158823892156416, 18581317012684800, 107358720517734400, 610249569258700800
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (36,-576,5376,-32256,129024,-344064,589824,-589824,262144).
-
List([0..20], n-> 4^n*Binomial(n+8, 8)); # G. C. Greubel, Jul 21 2019
-
[Binomial(n+8, 8)*4^n: n in [0..20]]; // Vincenzo Librandi, May 31 2011
-
seq(binomial(n+8,8)*4^n,n=0..20); # Zerinvary Lajos, Jun 23 2008
-
Table[Binomial[n+8,8]4^n,{n,0,20}] (* or *) LinearRecurrence[ {36,-576,5376,-32256,129024,-344064,589824,-589824,262144},{1,36,720,10560,126720,1317888,12300288,105431040,843448320},20]
-
vector(20, n, n--; 4^n*binomial(n+8, 8)) \\ G. C. Greubel, Jul 21 2019
-
[4^n*binomial(n+8, 8) for n in (0..20)] # G. C. Greubel, Jul 21 2019
A054340
10-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 40, 880, 14080, 183040, 2050048, 20500480, 187432960, 1593180160, 12745441280, 96865353728, 704475299840, 4931327098880, 33381291130880, 219362770288640, 1403921729847296, 8774510811545600, 53679360258867200, 322076161553203200, 1898554215471513600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (40,-720,7680,-53760,258048,-860160,1966080,-2949120,2621440,-1048576).
-
List([0..20], n-> 4^n*Binomial(n+9, 9)); # G. C. Greubel, Jul 21 2019
-
[4^n*Binomial(n+9, 9): n in [0..20]]; // Vincenzo Librandi, Oct 15 2011
-
seq(binomial(n+9,9)*4^n,n=0..20); # Zerinvary Lajos, Jul 02 2008
-
Table[4^n*Binomial[n+9,9], {n,0,20}] (* G. C. Greubel, Jul 21 2019 *)
-
vector(20, n, n--; 4^n*binomial(n+9, 9)) \\ G. C. Greubel, Jul 21 2019
A104625
Expansion of 1/(sqrt(1-4*x) - x^2).
Original entry on oeis.org
1, 2, 7, 24, 87, 322, 1211, 4604, 17645, 68042, 263655, 1025632, 4002601, 15662422, 61427543, 241386924, 950160607, 3745589510, 14784496003, 58424093536, 231112008371, 915065382154, 3626113490579, 14379912928572, 57064644495359
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/(sqrt(1-4*x) - x^2))); // G. C. Greubel, Aug 12 2018
-
CoefficientList[Series[1/(Sqrt[1-4*x] -x^2), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2018 *)
-
x='x+O('x^50); Vec(1/(sqrt(1-4*x) - x^2)) \\ G. C. Greubel, Aug 12 2018
Showing 1-10 of 11 results.
Comments