A053121 Catalan triangle (with 0's) read by rows.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0
Examples
Triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 1 0 1 3: 0 2 0 1 4: 2 0 3 0 1 5: 0 5 0 4 0 1 6: 5 0 9 0 5 0 1 7: 0 14 0 14 0 6 0 1 8: 14 0 28 0 20 0 7 0 1 9: 0 42 0 48 0 27 0 8 0 1 10: 42 0 90 0 75 0 35 0 9 0 1 ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013) E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3. From _Paul Barry_, May 29 2009: (Start) Production matrix is 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End) Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
References
- J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
- A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- I. Bajunaid et al., Function series, Catalan numbers and random walks on trees, Amer. Math. Monthly 112 (2005), 765-785.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 3.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, example 3.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013.
- J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results, 2013.
- J. Cigler, Some notes on q-Gould polynomials, 2013.
- Emeric Deutsch, A. Robertson and D. Saracino, Refined restricted involutions, European Journal of Combinatorics 28 (2007), 481-498 (see pp. 486 and 498).
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359, 2014
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986 (see |F_{l,p}| on page 114). - _N. J. A. Sloane_, Jan 29 2011
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
- Wolfdieter Lang, Chebyshev S-polynomials: ten applications.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Note 4, pp. 414-415.
- MathOverflow, Catalan numbers as sums of squares of numbers in the rows of the Catalan triangle - is there a combinatorial explanation?
- A. Nkwanta and A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- Karim Ritter von Merkl, Computing colored Khovanov homology, arXiv:2505.03916 [math.QA], 2025. See p. 2.
- Frank Ruskey and Mark Weston, Spherical Venn Diagrams with Involutory Isometries, Electronic Journal of Combinatorics, 18 (2011), #P191.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014).
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes.
- W.-J. Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Haskell
a053121 n k = a053121_tabl !! n !! k a053121_row n = a053121_tabl !! n a053121_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1] -- Reinhard Zumkeller, Feb 24 2012
-
Maple
T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006 F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end; r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011 A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1, procname(n-1,k-1)+procname(n-1,k+1))) end proc: seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
-
Mathematica
a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *) T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
-
PARI
T(n, m)=if(n
Charles R Greathouse IV, Mar 09 2016 -
Sage
def A053121_triangle(dim): M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1] + M[n-1,k+1] return M A053121_triangle(13) # Peter Luschny, Sep 19 2012
Formula
a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021
Extensions
Edited by N. J. A. Sloane, Jan 29 2011
A054335 A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0
Comments
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
The column sequences are for m=0..20: A000984, A000302 (powers of 4), A002457, A002697, A002802, A038845, A020918, A038846, A020920, A040075, A020922, A045543, A020924, A054337, A020926, A054338, A020928, A054339, A020930, A054340, A020932.
Riordan array (1/sqrt(1-4*x),x/sqrt(1-4*x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013
Examples
Triangle begins: 1; 2, 1; 6, 4, 1; 20, 16, 6, 1; 70, 64, 30, 8, 1; 252, 256, 140, 48, 10, 1; 924, 1024, 630, 256, 70, 12, 1; ... Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3. From _Paul Barry_, May 06 2009: (Start) Production matrix begins 2, 1; 2, 2, 1; 0, 2, 2, 1; -2, 0, 2, 2, 1; 0, -2, 0, 2, 2, 1; 4, 0, -2, 0, 2, 2, 1; 0, 4, 0, -2, 0, 2, 2, 1; -10, 0, 4, 0, -2, 0, 2, 2, 1; 0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Programs
-
GAP
T:= function(n, k) if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2)); else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2)); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
-
Magma
T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >; [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
Maple
A054335 := proc(n,k) if k <0 or k > n then 0 ; elif type(k,odd) then kprime := floor(k/2) ; binomial(n-kprime-1,kprime)*4^(n-k) ; else kprime := k/2 ; binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ; end if; end proc: # R. J. Mathar, Mar 12 2013 # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
-
Mathematica
Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *) a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
-
PARI
T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)); for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
-
Sage
def T(n, k): if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2) else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
Formula
a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*(x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-x*y-2*x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k=0..floor(n/2)} T(n-k,n-2*k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015
A098614 Product of Fibonacci and Catalan numbers: a(n) = A000045(n+1)*A000108(n).
1, 1, 4, 15, 70, 336, 1716, 9009, 48620, 267410, 1494844, 8465184, 48466796, 280073300, 1631408400, 9568812015, 56466198990, 335002137360, 1997007404700, 11955535480350, 71850862117320, 433322055191220, 2621615826231480, 15906988165723200, 96775058652983100
Offset: 0
Keywords
Comments
Radius of convergence: r = (sqrt(5)-1)/8; A(r) = sqrt(2+2/sqrt(5)). More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
a(n) is also the number of nonnesting permutations of {1,1,2,2,...,n,n} that avoid the patterns 1223, 1332, 2113, or the patterns 1123, 1132, 2133. - Amya Luo, Dec 11 2024
Examples
Sequence has the factored form: {1*1, 1*1, 2*2, 3*5, 5*14, 8*42, 13*132, 21*429, ...}.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
- Paul Barry, On the duals of the Fibonacci and Catalan-Fibonacci polynomials and Motzkin paths, arXiv:2101.10218 [math.CO], 2021.
- Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
- Sergi Elizalde and Amya Luo, Pattern avoidance in nonnesting permutations, arXiv:2412.00336 [math.CO], 2024.
Programs
-
Magma
[Fibonacci(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jul 31 2024
-
Mathematica
With[{nn=30},Times@@@Thread[{Fibonacci[Range[nn]],CatalanNumber[ Range[ 0,nn-1]]}]] (* Harvey P. Dale, Nov 14 2011 *)
-
PARI
{a(n)=local(X=x+O(x^(n+3)), A); A = sqrt( (1-2*x - sqrt(1-4*X-16*x^2)) / (10*x^2)); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
-
PARI
{a(n)=binomial(2*n,n)/(n+1)*round(((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))/(2^(n+1)*sqrt(5)))}
-
SageMath
[fibonacci(n+1)*catalan_number(n) for n in range(41)] # G. C. Greubel, Jul 31 2024
Formula
G.f.: A(x) = sqrt( (1-2*x - sqrt(1-4*x-16*x^2))/10 )/x.
G.f. satisfies: A(x) = sqrt( 1 + 2*x*A(x)^2 + 5*x^2*A(x)^4 ).
a(n) == 1 (mod 2) iff n = 2^k - 1 for k>=0.
n*(n+1)*a(n) -2*n*(2*n-1)*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 17 2018
Sum_{n>=0} a(n)/8^n = 2*sqrt(2/5). - Amiram Eldar, May 06 2023
A102898 A Catalan-related transform of 3^n.
1, 3, 9, 30, 99, 330, 1098, 3660, 12195, 40650, 135486, 451620, 1505358, 5017860, 16726068, 55753560, 185844771, 619482570, 2064940470, 6883134900, 22943778138, 76479260460, 254930851404, 849769504680, 2832564956814
Offset: 0
Comments
Transform of 1/(1-3*x) under the mapping g(x) -> g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. The inverse transform is h(x) -> h(x/(1+x^2)).
References
- Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2*x/(3*Sqrt(1-4*x^2)+2*x-3) )); // G. C. Greubel, Jul 08 2022 -
Mathematica
CoefficientList[Series[2*x/(3*Sqrt[1-4*x^2]+2*x-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
SageMath
[1]+[2*sum(k*binomial(n-1, (n-k)//2)*((n-k+1)%2)*3^k/(n+k) for k in (0..n)) for n in (1..40)] # G. C. Greubel, Jul 08 2022
Formula
G.f.: 2*x/(3*sqrt(1-4*x^2) + 2*x - 3).
a(n) = Sum_{k=0..n} k*binomial(n-1, (n-k)/2)*(1 + (-1)^(n-k))*3^k/(n+k), n > 0, with a(0) = 1.
3*n*a(n) - 10*n*a(n-1) - 12*(n-3)*a(n-2) + 40*(n-3)*a(n-3) = 0. - R. J. Mathar, Sep 21 2012
a(n) ~ 2^(n+2) * 5^(n-1) / 3^n. - Vaclav Kotesovec, Feb 01 2014
A098617 G.f. A(x) satisfies: A(x*G(x)) = G(x), where G(x) is the g.f. for A098616(n) = Pell(n+1)*Catalan(n).
1, 2, 6, 16, 46, 128, 364, 1024, 2902, 8192, 23188, 65536, 185420, 524288, 1483096, 4194304, 11863910, 33554432, 94908420, 268435456, 759257636, 2147483648, 6074027496, 17179869184, 48592102396, 137438953472, 388736403144
Offset: 0
Keywords
Comments
G.f. satisfies: A(x) = x/Series_Reversion(x*G(x)), where G(x) is the g.f. for A098616 = {1*1, 2*1, 5*2, 12*5, 29*14, 70*42, 169*132, ...}.
Hankel transform is 2^n. - Paul Barry Jan 19 2011
Examples
G.f. = 1 + 2*x + 6*x^2 + 16*x^3 + 46*x^4 + 128*x^5 + 364*x^6 + 1024*x^7 + ...
Links
- Fung Lam, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[(Sqrt[1-4*x^2] + 2*x)/(1-8*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 31 2014 *)
-
Maxima
a(n):=2^n*sum(binomial((n-1)/2, j),j,0,n/2); /* Vladimir Kruchinin, May 18 2011 */
-
PARI
a(n)=polcoeff((sqrt(1-4*x^2+x^2*O(x^n))+2*x)/(1-8*x^2),n)
Formula
G.f.: (sqrt(1-4*x^2) + 2*x)/(1-8*x^2).
a(2*n+1) = 2*8^n.
a(n) = sum{k=0..floor((n+1)/2), (C(n,k)-C(n,k-1))*A000129(n-2k+1)}. - Paul Barry Jan 19 2011
a(n) = 2^n*sum(j=0..n/2, binomial((n-1)/2,j)). - Vladimir Kruchinin, May 18 2011
a(n) = Sum_{k, 0<=k<=n} A201093(n,k)*2^k. - Philippe Deléham, Nov 27 2011
G.f.: 1/(1-2x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-... (continued fraction). - Philippe Deléham, Nov 27 2011
Recurrence: (n+6)*a(n)=256*(n+1)*a(n-6)-128*(n+3)*a(n-4)+4*(5*n+23)*a(n-2), for even n. - Fung Lam, Mar 31 2014
Recurrence: n*a(n) = 12*(n-1)*a(n-2) - 32*(n-3)*a(n-4). - Vaclav Kotesovec, Mar 31 2014
Asymptotic approximation: a(n) ~ (4/sqrt(2))^n/sqrt(2)+2^(n+1)/sqrt(2*Pi*n^3), for even n. - Fung Lam, Mar 31 2014
0 = a(n) * (+64*a(n+1) - 8*a(n+3)) + a(n+2) * (-8*a(n+1) + a(n+3)) if n>=0. - Michael Somos, Apr 07 2014
A371458 Expansion of 1/(1 - x/(1 - 9*x^3)^(1/3)).
1, 1, 1, 1, 4, 7, 10, 31, 61, 100, 274, 565, 1000, 2551, 5380, 10000, 24376, 52018, 100000, 236389, 507706, 1000000, 2313346, 4986178, 10000000, 22773334, 49180165, 100000000, 225092416, 486575935, 1000000000, 2231117230, 4824998773, 10000000000
Offset: 0
Keywords
Programs
-
Maple
A371458 := proc(n) add(9^k*binomial(n/3-1,k),k=0..floor(n/3)) ; end proc: seq(A371458(n),n=0..70) ; # R. J. Mathar, Jun 07 2024
-
PARI
a(n) = sum(k=0, n\3, 9^k*binomial(n/3-1, k));
Formula
a(3*n) = 10^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3-1,k).
D-finite with recurrence (n-1)*(n-2)*a(n) +4*(-7*n^2+48*n-86)*a(n-3) +9*(29*n-141)*(n-6)*a(n-6) -810*(n-6)*(n-9)*a(n-9)=0. - R. J. Mathar, Jun 07 2024
a(n) == 1 (mod 3). - Seiichi Manyama, Jun 11 2024
A373509 Expansion of 1/(1 - x/(1 - 8*x^4)^(1/4)).
1, 1, 1, 1, 1, 3, 5, 7, 9, 21, 37, 57, 81, 169, 301, 485, 729, 1431, 2549, 4211, 6561, 12411, 22045, 36975, 59049, 109047, 193029, 326923, 531441, 965511, 1703469, 2903851, 4782969, 8590149, 15111573, 25875081, 43046721, 76670441, 134539837, 231087525
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n\4, 8^k*binomial(n/4-1, k));
Formula
a(4*n) = 9^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/4)} 8^k * binomial(n/4-1,k).
A111959 Renewal array for aerated central binomial coefficients.
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 6, 0, 6, 0, 1, 0, 16, 0, 8, 0, 1, 20, 0, 30, 0, 10, 0, 1, 0, 64, 0, 48, 0, 12, 0, 1, 70, 0, 140, 0, 70, 0, 14, 0, 1, 0, 256, 0, 256, 0, 96, 0, 16, 0, 1, 252, 0, 630, 0, 420, 0, 126, 0, 18, 0, 1, 0, 1024, 0, 1280, 0, 640, 0, 160, 0, 20, 0, 1, 924, 0, 2772, 0
Offset: 0
Comments
Row sums are A098615.
Binomial transform (product with C(n,k)) is A111960.
Diagonal sums are A026671 (with interpolated zeros).
Inverse is (1/sqrt(1+4x^2),x/sqrt(1+4x^2)), or (sqrt(-1))^(n-k)*T(n,k). [corrected by Peter Bala, Aug 13 2021]
The Riordan array (1,x/sqrt(1-4*x^2)) is the same array with an additional column of zeros (besides the top element 1) added to the left. - Vladimir Kruchinin, Feb 17 2011
Examples
From _Peter Bala_, Aug 13 2021: (Start) Triangle begins 1; 0, 1; 2, 0, 1; 0, 4, 0, 1; 6, 0, 6, 0, 1; 0, 16, 0, 8, 0, 1; Infinitesimal generator begins 0; 0, 0; 2, 0, 0; 0, 4, 0, 0; 0, 0, 6, 0, 0; 0, 0, 0, 8, 0, 0; (End)
Links
- Paul Barry, On the duals of the Fibonacci and Catalan-Fibonacci polynomials and Motzkin paths, arXiv:2101.10218 [math.CO], 2021.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Formula
Riordan array (1/sqrt(1-4x^2), x/sqrt(1-4x^2)); number triangle T(n, k)=(1+(-1)^(n-k))*binomial((n-1)/2, (n-k)/2)*2^(n-k)/2.
G.f.: 1/(1-xy-2x^2/(1-x^2/(1-x^2/(1-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
From Peter Bala, Aug 13 2021: (Start)
The row entries, read from right to left, are the coefficients in the n-th order Taylor polynomial of (sqrt(1 + 4*x^2))^((n-1)/2) at x = 0.
The infinitesimal generator of this array has the sequence [2, 4, 6, 8, 10, ...] on the second subdiagonal below the main diagonal and zeros elsewhere.
The m-th power of the array is the Riordan array (1/sqrt(1 - 4*m*x^2), x/sqrt(1 - 4*m*x^2)) with entries given by sqrt(m)^(n-k)*T(n,k). (End)
A373510 Expansion of 1/(1 - x/(1 - 25*x^5)^(1/5)).
1, 1, 1, 1, 1, 1, 6, 11, 16, 21, 26, 106, 211, 341, 496, 676, 2256, 4611, 7866, 12146, 17576, 51781, 106761, 188266, 302671, 456976, 1236306, 2552661, 4602416, 7620071, 11881376, 30218956, 62278561, 114056566, 193134346, 308915776, 749942856, 1540351961
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n\5, 25^k*binomial(n/5-1, k));
Formula
a(5*n) = 26^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/5)} 25^k * binomial(n/5-1,k).
a(n) == 1 (mod 5).
A098619 G.f. A(x) satisfies: A(x*G098618(x)) = G098618(x), where G098618 is the g.f. for A098618(n) = A007482(n)*Catalan(n).
1, 3, 13, 51, 213, 867, 3589, 14739, 60853, 250563, 1033605, 4259571, 17565909, 72412707, 298586661, 1231016019, 5075753589, 20927272323, 86286346693, 355763629491, 1466857936405, 6047981701347, 24936516122469, 102815688922899, 423920292507061, 1747866711689283, 7206641564551429
Offset: 0
Keywords
Comments
G.f. satisfies: A(x) = x/(series reversion of x*G098618(x)), where G098618 is the g.f. for A098618 = {1*1,3*1,11*2,39*5,139*14,495*42,1763*132,...}.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
Flatten[{1,3,13,51,Table[17^(n/2)*(1/2+1/2*(-1)^n + 3/34*Sqrt[17]*(1-(-1)^n) + Sum[(-1)^j*(4/17 + Sum[Binomial[2*k-1,k-1]*2^(k+3)/ ((k+1)*17^(k+1)), {k,1,Floor[(j-1)/2]}]),{j,3,n-1}]),{n,4,20}]}] (* Vaclav Kotesovec, Oct 29 2012 *)
-
PARI
a(n)=polcoeff((sqrt(1-8*x^2+x^2*O(x^n))+3*x)/(1-17*x^2),n);
-
PARI
x='x+O('x^66); Vec((sqrt(1-8*x^2) + 3*x)/(1-17*x^2)) \\ Joerg Arndt, May 12 2013
Formula
G.f.: (sqrt(1-8*x^2) + 3*x)/(1-17*x^2).
a(2*n+1) = 3*17^n.
Recurrence: n*a(n) = (25*n-24)*a(n-2) - 136*(n-3)*a(n-4). - Vaclav Kotesovec, Oct 29 2012
Comments