cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A371456 Expansion of 1/(1 - x/(1 - 9*x^2)^(1/3)).

Original entry on oeis.org

1, 1, 1, 4, 7, 28, 58, 223, 505, 1876, 4498, 16255, 40576, 143422, 368965, 1280830, 3373225, 11536309, 30958240, 104559082, 284934754, 952183048, 2628211291, 8703329266, 24283705558, 79785964555, 224677646416, 733160045533, 2081054132179, 6750196280983
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • Maple
    A371456 := proc(n)
        add(9^k*binomial((n+k)/3-1,k),k=0..floor(n/2)) ;
    end proc:
    seq(A371456(n),n=0..70) ; # R. J. Mathar, Jun 07 2024
  • PARI
    a(n) = sum(k=0, n\2, 9^k*binomial((n+k)/3-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} 9^k * binomial((n+k)/3-1,k).
D-finite with recurrence -(n-1)*(n-2)*(n-8)*a(n) +3*(9*n^3-123*n^2+490*n-616)*a(n-2) +(n-1)*(n-2)*(n-8)*a(n-3) +9*(-27*n^3+441*n^2-2318*n+3984)*a(n-4) +6*(-3*n^3+45*n^2-206*n+284)*a(n-5) +81*(3*n-20)*(n-6)*(3*n-19)*a(n-6) +9*(3*n-20)*(n-6)*(3*n-19)*a(n-7)=0. - R. J. Mathar, Jun 07 2024
a(n) == 1 (mod 3). - Seiichi Manyama, Jun 11 2024

A373510 Expansion of 1/(1 - x/(1 - 25*x^5)^(1/5)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 11, 16, 21, 26, 106, 211, 341, 496, 676, 2256, 4611, 7866, 12146, 17576, 51781, 106761, 188266, 302671, 456976, 1236306, 2552661, 4602416, 7620071, 11881376, 30218956, 62278561, 114056566, 193134346, 308915776, 749942856, 1540351961
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, 25^k*binomial(n/5-1, k));

Formula

a(5*n) = 26^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/5)} 25^k * binomial(n/5-1,k).
a(n) == 1 (mod 5).

A373278 Expansion of 1 / ( (1 - 9*x^3) * (1 - x/(1 - 9*x^3)^(1/3)) ).

Original entry on oeis.org

1, 1, 1, 10, 13, 16, 100, 148, 205, 1000, 1606, 2410, 10000, 17005, 27070, 100000, 177421, 295648, 1000000, 1833178, 3168538, 10000000, 18811948, 33503020, 100000000, 192080866, 350707345, 1000000000, 1953820210, 3642942040, 10000000000, 19815499120, 37611477133
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 9^k*binomial(n/3, k));

Formula

a(3*n) = 10^n for n >= 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3,k).
a(n) == 1 (mod 3).
D-finite with recurrence (n-1)*(n-2)*a(n) +2*(-14*n^2+69*n-91)*a(n-3) +9*(n-3)*(29*n-114)*a(n-6) -810*(n-3)*(n-6)*a(n-9)=0. - R. J. Mathar, Jun 21 2024

A373511 Expansion of 1/(1 - x/(1 - 49*x^7)^(1/7)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 8, 15, 22, 29, 36, 43, 50, 253, 505, 806, 1156, 1555, 2003, 2500, 9906, 20105, 33440, 50254, 70890, 95691, 125000, 423270, 861190, 1467915, 2275001, 3316405, 4628485, 6250000, 18944976, 38420768, 66538494, 105430585, 157517592, 225524993, 312500000
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\7, 49^k*binomial(n/7-1, k));

Formula

a(7*n) = 50^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/7)} 49^k * binomial(n/7-1,k).
a(n) == 1 (mod 7).

A373544 Expansion of 1/(1 - x/(1 - 9*x^3)^(2/3)).

Original entry on oeis.org

1, 1, 1, 1, 7, 13, 19, 70, 157, 280, 799, 1894, 3781, 9646, 23080, 49159, 119203, 283972, 627760, 1487095, 3518617, 7945561, 18620746, 43801447, 100117099, 233475802, 546859390, 1258634440, 2928668632, 6839770279, 15804569341, 36739434904, 85640217781, 198337427839
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 9^k*binomial(2*n/3-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(2*n/3-k-1,k).
a(n) == 1 (mod 3).

A386721 Expansion of e.g.f. exp(x/(1 - 9*x^3)^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 73, 361, 1081, 93241, 912241, 4907953, 476295121, 7244922961, 58360393081, 6211842488281, 130899060524233, 1435239754046281, 164948740478252641, 4498516738183799521, 63300797606830713121, 7772118657831401082913, 262261735708117281036841
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2025

Keywords

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1 - 9*x^3)^(1/3)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x/(1 - 9*x^3)^(1/3)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, 9^k*binomial(n/3-1, k)/(n-3*k)!);
    

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} 9^k * binomial(n/3-1,k)/(n-3*k)!.
a(n) == 1 mod 72.
From Vaclav Kotesovec, Sep 03 2025: (Start)
a(n) = (36*n^3 - 324*n^2 + 1008*n - 1079)*a(n-3) - 162*(n-6)*(n-5)*(n-4)*(n-3)*(3*n^2 - 27*n + 64)*a(n-6) + 2916*(n-9)*(n-8)*(n-7)*(n-6)^3*(n-5)*(n-4)*(n-3)*a(n-9) - 6561*(n-12)*(n-11)*(n-10)*(n-9)^2*(n-8)*(n-7)*(n-6)^2*(n-5)*(n-4)*(n-3)*a(n-12).
a(n) ~ 3^(2*n/3 - 1/4) * exp(4*3^(-3/2)*n^(1/4) - n) * n^(n - 3/8) / 2. (End)
Showing 1-6 of 6 results.