A098616
Product of Pell and Catalan numbers: a(n) = A000129(n+1)*A000108(n).
Original entry on oeis.org
1, 2, 10, 60, 406, 2940, 22308, 175032, 1408550, 11561836, 96425836, 814773960, 6960289532, 60012947800, 521582661000, 4564643261040, 40190674554630, 355772529165900, 3164408450118300, 28266363849505320, 253466716153665300, 2280803103062033160, 20588945107316958840
Offset: 0
Sequence begins: [1*1, 2*1, 5*2, 12*5, 29*14, 70*42, 169*132, 408*429,...].
-
With[{nn=30},Times@@@Thread[{LinearRecurrence[{2,1},{1,2},nn], CatalanNumber[ Range[0,nn-1]]}]] (* Harvey P. Dale, Jan 04 2012 *)
a[n_] := Fibonacci[n + 1, 2] * CatalanNumber[n]; Array[a, 25, 0] (* Amiram Eldar, May 05 2023 *)
-
a(n) = binomial(2*n,n)/(n+1)*round(((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/(2*sqrt(2)))
A098619
G.f. A(x) satisfies: A(x*G098618(x)) = G098618(x), where G098618 is the g.f. for A098618(n) = A007482(n)*Catalan(n).
Original entry on oeis.org
1, 3, 13, 51, 213, 867, 3589, 14739, 60853, 250563, 1033605, 4259571, 17565909, 72412707, 298586661, 1231016019, 5075753589, 20927272323, 86286346693, 355763629491, 1466857936405, 6047981701347, 24936516122469, 102815688922899, 423920292507061, 1747866711689283, 7206641564551429
Offset: 0
-
Flatten[{1,3,13,51,Table[17^(n/2)*(1/2+1/2*(-1)^n + 3/34*Sqrt[17]*(1-(-1)^n) + Sum[(-1)^j*(4/17 + Sum[Binomial[2*k-1,k-1]*2^(k+3)/ ((k+1)*17^(k+1)), {k,1,Floor[(j-1)/2]}]),{j,3,n-1}]),{n,4,20}]}] (* Vaclav Kotesovec, Oct 29 2012 *)
-
a(n)=polcoeff((sqrt(1-8*x^2+x^2*O(x^n))+3*x)/(1-17*x^2),n);
-
x='x+O('x^66); Vec((sqrt(1-8*x^2) + 3*x)/(1-17*x^2)) \\ Joerg Arndt, May 12 2013
A200376
G.f.: 1/sqrt(1-10*x^2 + x^4/(1-8*x^2)) + x/(1-9*x^2).
Original entry on oeis.org
1, 1, 5, 9, 37, 81, 301, 729, 2549, 6561, 22045, 59049, 193029, 531441, 1703469, 4782969, 15111573, 43046721, 134539837, 387420489, 1200901157, 3486784401, 10739313997, 31381059609, 96172251061, 282429536481, 862142190941, 2541865828329, 7734936371269, 22876792454961, 69439155241581
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 9*x^3 + 37*x^4 + 81*x^5 + 301*x^6 + 729*x^7 +...
The g.f. of A200375(n) = A000108(n)*A001045(n) begins:
G(x) = 1 + x + 2*3*x^2 + 5*5*x^3 + 14*11*x^4 + 42*21*x^5 + 132*43*x^6 +...
where A(x) = G(x/A(x)) and G(x) = A(x*G(x)).
-
CoefficientList[Series[1/Sqrt[1-10x^2+x^4/(1-8x^2)]+x/(1-9x^2),{x,0,30}], x] (* Harvey P. Dale, Nov 19 2011 *)
-
{a(n)=polcoeff(1/sqrt(1-10*x^2 + x^4/(1-8*x^2 +x*O(x^n))) + x/(1-9*x^2 +x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(G=sum(m=0,n,binomial(2*m, m)/(m+1)*polcoeff(1/(1-x-2*x^2+x*O(x^m)), m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G),n)}
for(n=0,30,print1(a(n),", "))
A194349
E.g.f.: -log( sqrt(1-x^2) - x ).
Original entry on oeis.org
1, 2, 5, 24, 129, 960, 7965, 80640, 903105, 11612160, 163451925, 2554675200, 43259364225, 797058662400, 15764670046125, 334764638208000, 7571150452490625, 182111963185152000, 4634731528895593125, 124564582818643968000
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 5*x^3/3! + 24*x^4/4! + 129*x^5/5! + ...
where
exp(A(x)) = 1 + 2*(x/2) + 6*(x/2)^2 + 16*(x/2)^3 + 46*(x/2)^4 + 128*(x/2)^5 + ... + A098617(n)*(x/2)^n + ...
-
With[{nn=30},Rest[CoefficientList[Series[-Log[Sqrt[1-x^2]-x],{x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Dec 01 2011 *)
-
{a(n)=n!*polcoeff(-log(sqrt(1-x^2+x*O(x^n))-x),n)}
-
{A000129(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
{a(n)=if(n<1,0,sum(k=0,floor((n+1)/2),binomial(n+1, k)*A000129(n+1-2*k))*(n-1)!/2^n)}
A201093
Triangle T(n,k), read by rows, given by (0,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,...) DELTA (1,0,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 3, 1, 0, 0, 2, 3, 4, 1, 0, 2, 2, 4, 6, 5, 1, 0, 0, 4, 6, 8, 10, 6, 1, 0, 5, 5, 9, 13, 15, 15, 7, 1, 0, 0, 10, 15, 20, 25, 26, 21, 8, 1, 0, 14, 14, 24, 34, 41, 45, 42, 28, 9, 1
Offset: 0
Triangle begins :
1
0, 1
0, 1, 1
0, 0, 2, 1
0, 1, 1, 3, 1
0, 0, 2, 3, 4, 1
0, 2, 2, 4, 6, 5, 1
0, 0, 4, 6, 8, 10, 6, 1
0, 5, 5, 9, 13, 15, 15, 7, 1
0, 0, 10, 15, 20, 25, 26, 21, 8, 1
0, 14, 14, 24, 34, 41, 45, 42, 28, 9, 1
0, 0, 28, 42, 56, 70, 78, 77, 64, 36, 10, 1
0, 42, 42, 70, 98, 120, 136, 140, 126, 93, 45, 11, 1
Showing 1-5 of 5 results.
Comments